1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Demo of the risk theory facilities provided by actuar
###
### AUTHORS: Christophe Dutang, Vincent Goulet <vincent.goulet@act.ulaval.ca>
require(actuar)
require(graphics)
### DISCRETIZATION OF CONTINUOUS DISTRIBUTIONS
## Upper and lower discretization of a Gamma(2, 1) distribution with a
## step (or span, or lag) of 0.5. The value of 'to' is chosen so as to
## cover most of the distribution.
x <- seq(0, qgamma(1 - 1E-6, 2, 1), by = 0.5)
xu <- tail(x, 1)
fu <- discretize(pgamma(x, 2, 1), method = "upper",
from = 0, to = xu, step = 0.5)
fl <- discretize(pgamma(x, 2, 1), method = "lower",
from = 0, to = xu, step = 0.5)
curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2)
par(col = "blue")
plot(stepfun(head(x, -1), diffinv(fu)), pch = 19, add = TRUE)
par(col = "green")
plot(stepfun(x, diffinv(fl)), pch = 19, add = TRUE)
par(col = "black")
## Discretization with the rounding method, which has the true cdf
## pass through the midpoints of the intervals [x - step/2, x +
## step/2).
fr <- discretize(pgamma(x, 2, 1), method = "rounding",
from = 0, to = xu, step = 0.5)
curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2)
par(col = "blue")
plot(stepfun(head(x, -1), diffinv(fr)), pch = 19, add = TRUE)
par(col = "black")
## Local matching of the first moment. This requires a function to
## compute the limited expected value of the true distribution in any
## point.
fb <- discretize(pgamma(x, 2, 1), method = "unbiased",
lev = levgamma(x, 2, 1),
from = 0, to = xu, step = 0.5)
curve(pgamma(x, 2, 1), xlim = range(x), lwd = 2)
par(col = "blue")
plot(stepfun(x, diffinv(fb)), pch = 19, add = TRUE)
par(col = "black")
all.equal(diff(pgamma(range(x), 2, 1)),
sum(fb)) # same total probability
all.equal(levgamma(xu, 2, 1) - xu * pgamma(xu, 2, 1, lower.tail = FALSE),
drop(crossprod(x, fb))) # same expected value
## Comparison of all four methods
fu <- discretize(plnorm(x), method = "upper", from = 0, to = 5)
fl <- discretize(plnorm(x), method = "lower", from = 0, to = 5)
fr <- discretize(plnorm(x), method = "rounding", from = 0, to = 5)
fb <- discretize(plnorm(x), method = "unbiased", from = 0, to = 5,
lev = levlnorm(x))
curve(plnorm(x), from = 0, to = 5, lwd = 2)
par(col = "blue")
plot(stepfun(0:4, diffinv(fu)), pch = 19, add = TRUE)
par(col = "red")
plot(stepfun(0:5, diffinv(fl)), pch = 19, add = TRUE)
par(col = "green")
plot(stepfun(0:4, diffinv(fr)), pch = 19, add = TRUE)
par(col = "magenta")
plot(stepfun(0:5, diffinv(fb)), pch = 19, add = TRUE)
legend("bottomright", legend = c("upper", "lower", "rounding", "unbiased"),
col = c("blue", "red", "green", "magenta"), lty = 1, pch = 19,
text.col = "black")
par(col = "black")
### CALCULATION OF THE AGGREGATE CLAIM AMOUNT DISTRIBUTION
## Calculation of the aggregate claim amount distribution using the
## recursive method (Panjer). Argument 'x.scale' is used to specify
## how much a value of 1 is really worth.
fx.b <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,
method = "unbiased", lev = levgamma(x, 2, 1))
Fs.b <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx.b, lambda = 10, x.scale = 0.5)
summary(Fs.b) # summary method
knots(Fs.b) # support of Fs.b (knots)
Fs.b(knots(Fs.b)) # evaluation at knots
plot(Fs.b, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic
mean(Fs.b) # empirical mean
quantile(Fs.b) # quantiles
## Convolutions (exact calculation). Requires a vector of
## probabilities for the frequency model. This method can quickly
## become impractical for a large expected number of claims.
pn <- dpois(0:qpois(1-1E-6, 10), 10)
Fs <- aggregateDist("convolution", model.freq = pn, model.sev = fx.b,
x.scale = 0.5)
summary(Fs) # summary method
knots(Fs) # support of Fs (knots)
Fs(knots(Fs)) # evaluation at knots
plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic
mean(Fs) # empirical mean
quantile(Fs) # quantiles
## Normal approximation. Not hugely useful, but simple to implement...
Fs.n <- aggregateDist("normal", moments = c(20, 60))
summary(Fs.n) # summary method
plot(Fs.n, xlim = c(0, 60)) # graphic
mean(Fs.n) # true mean
quantile(Fs.n) # normal quantiles
## Normal Power II approximation. The approximation is valid for
## values above the expected value only.
Fs.np <- aggregateDist("npower", moments = c(20, 60, 0.516398))
summary(Fs.np) # summary method
plot(Fs.np, xlim = c(0, 60)) # truncated graphic
## Simulation method. Function 'simul' is used to simulate the data
## (see the 'simulation' demo for examples).
Fs.s <- aggregateDist("simulation",
model.freq = expression(y = rpois(10)),
model.sev = expression(y = rgamma(2, 1)),
nb.simul = 10000)
summary(Fs.s) # summary method
plot(Fs.s, do.points = FALSE, verticals = TRUE, xlim = c(0, 60)) # graphic
mean(Fs.s) # empirical mean
quantile(Fs.s) # quantiles
## Graphic comparing the cdfs obtained by a few methods.
fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,
method = "upper")
Fs.u <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx.u, lambda = 10, x.scale = 0.5)
fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,
method = "lower")
Fs.l <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx.l, lambda = 10, x.scale = 0.5)
par(col = "black")
plot(Fs.b, do.points = FALSE, verticals = TRUE, xlim = c(0, 60), sub = "")
par(col = "blue")
plot(Fs.u, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "")
par(col = "red")
plot(Fs.l, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "")
par(col = "green")
plot(Fs.s, do.points = FALSE, verticals = TRUE, add = TRUE, sub = "")
par(col = "magenta")
plot(Fs.n, add = TRUE, sub = "")
legend("bottomright",
legend = c("recursive + unbiased", "recursive + upper",
"recursive + lower", "simulation",
"normal approximation"),
col = c("black", "blue", "red", "green", "magenta"),
lty = 1, text.col = "black", cex = 1.2)
par(col = "black")
## Table of quantiles for the same methods as graphic above.
x <- knots(Fs.l)
m <- which.min(x[round(Fs.l(x), 6) > 0])
M <- which.max(x[round(Fs.u(x), 6) < 1])
x <- x[round(seq.int(from = m, to = M, length = 30))]
round(cbind(x = x,
Lower = Fs.l(x),
Unbiased = Fs.b(x),
Upper = Fs.u(x),
Simulation = Fs.s(x),
Normal = Fs.n(x)), 6)
### CALCULATION OF THE ADJUSTMENT COEFFICIENT
## No reinsurance, generalized Erlang claim amounts, inverse gamma
## interarrival times and independence. The adjustment coefficient is
## increasing with the safety loading.
mgf <- function(x) 1/(1 - x) * 2/(2 - x) * 3/(3 - x)
adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.1, 1)
adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.2, 1)
adjCoef(mgf, mgfinvgamma(x, 2, 6/11), 1.3, 1)
## More sophisticated example: comparison of the effect of dependence
## on the adjustment coefficient in the case of proportional
## reinsurance. Use a Clayton copula with exponential marginals.
rclayton <- function(alpha, n)
{
val <- cbind(runif(n), runif(n))
val[, 2] <- (val[, 1]^(-alpha) * (val[, 2]^(-alpha/(alpha + 1)) - 1) + 1)^(-1/alpha)
val
}
u <- rclayton(2, 1000) # variates with positive dependence
x <- qexp(u[, 1]) # claim amounts
w <- qexp(u[, 2]) # interarrival times
## Premium rate and Lundberg's functions of the retention rate. We
## assume a safety loading of 20% for the insurer and 30% for the
## reinsurer and premium calculated with the expected value principle.
p <- function(a) mean(x)/mean(w) * (1.2 - 1.3 + 1.3 * a)
h <- function(r, a) mean(exp(r * (a * x - p(a) * w)))
R1 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 1/3, to = 1)
plot(R1)
## Repeat the above with independent claim amounts and interarrival
## times.
u <- rclayton(1, 1000) # independent variates
x <- qexp(u[,1]) # claim amounts
w <- qexp(u[,2]) # interarrival times
R2 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 1/3, to = 1)
plot(R2, add = TRUE, col = "green")
legend("bottomright", legend = c("dependence", "independence"),
col = c("black", "green"), lty = 1)
## Similar example with excess-of-loss reinsurance.
## positive dependence
u <- rclayton(2, 1000) # variates with positive dependence
x <- qexp(u[,1]) # claim amounts
w <- qexp(u[,2]) # interarrival times
p <- function(L)
mean(x)/mean(w) * (1.2 - 1.3) + 1.3 * mean(pmin(L, x))/mean(w)
h <- function(r, L)
mean(exp(r * (pmin(L, x) - p(L) * w)))
R3 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 0, to = 10)
plot(R3)
u <- rclayton(1, 1000) # independent variates
x <- qexp(u[,1]) # claim amounts
w <- qexp(u[,2]) # interarrival times
R4 <- adjCoef(h = h, upper = 1, reinsurance = "prop", from = 0, to = 10)
plot(R4, add = TRUE, col = "green")
legend("bottomright", legend = c("dependence", "independence"),
col = c("black", "green"), lty = 1)
### CALCULATION OF RUIN PROBABILITIES
## Case with an explicit formula: exponential claims and interarrival
## times. Safety loading is always 20% and premiums are always
## calculated according to the expected value principle.
psi <- ruin(claims = "exponential",
par.claims = list(rate = 1),
wait = "exponential",
par.wait = list(rate = 1),
premium = 1.2)
psi(0:10)
plot(psi, from = 0, to = 10)
## Exponential claims and hyper-exponential interarrival times.
psi <- ruin(claims = "exponential",
par.claims = list(rate = 2),
wait = "exponential",
par.wait = list(rate = c(2, 3, 1)/2, w = c(2, 3, 1)/6),
premium = 1.2)
psi(0:10)
## Hyper-exponential claims and interarrival times.
psi <- ruin(claims = "exponential",
par.claims = list(rate = c(2, 3, 1)/2, w = c(2, 3, 1)/6),
wait = "exponential",
par.wait = list(rate = c(2, 3, 1)/4, w = c(2, 3, 1)/6),
premium = 0.6)
psi(0:10)
## Exponential claims and Erlang interarrival times
psi <- ruin(claims = "exponential",
par.claims = list(rate = 2),
wait = "Erlang",
par.wait = list(shape = 2, rate = 1),
premium = 1.2)
psi(0:10)
## Erlang claims and interarrival times
psi <- ruin(claims = "Erlang",
par.claims = list(shape = 2, rate = 2),
wait = "Erlang",
par.wait = list(shape = 2, rate = 1),
premium = 0.6)
psi(0:10)
## Mixture of Erlang for claims and Erlang interarrival times
psi <- ruin(claims = "Erlang",
par.claims = list(shape = c(2, 4), rate = c(1, 3),
w = c(1, 2)/3),
wait = "Erlang",
par.wait = list(shape = 2, rate = 1),
premium = 1.2)
psi(0:10)
## Generalized Erlang claims and mixture of two generalized Erlang
## interarrival times. These must be given as phase-type distributions
## to 'ruin'.
prob.c <- c(1, 0, 2, 0)/3
rate.c <- cbind(c(-1, 0, 0, 0), c(1, -3, 0, 0),
c(0, 0, -2, 0), c(0, 0, 2, -3))
mean.c <- mphtype(1, prob.c, rate.c)
prob.w <- c(1, 0, 0)
rate.w <- cbind(c(-1, 0, 0), c(1, -2, 0), c(0, 2, -3))
mean.w <- mphtype(1, prob.w, rate.w)
psi <- ruin(claims = "phase-type",
par.claims = list(prob = prob.c, rate = rate.c),
wait = "phase-type",
par.wait = list(prob = prob.w, rate = rate.w),
premium = 1.2 * mean.c/mean.w)
psi(0:10)
par(op)
|