1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Demo of the loss distributions facilities provided by actuar
###
### AUTHOR: Vincent Goulet <vincent.goulet@act.ulaval.ca>
require(actuar)
require(graphics)
### A utility function to create graphs for probability laws
showgraphs <- function(fun, par, what = c("d", "p", "m", "lev"), xlim)
{
dist <- switch(fun,
trbeta = "TRANSFORMED BETA DISTRIBUTION",
genpareto = "GENERALIZED PARETO DISTRIBUTION",
burr = "BURR DISTRIBUTION",
invburr = "INVERSE BURR DISTRIBUTION",
pareto = "PARETO DISTRIBUTION",
invpareto = "INVERSE PARETO DISTRIBUTION",
llogis = "LOGLOGISTIC DISTRIBUTION",
paralogis = "PARALOGISTIC DISTRIBUTION",
invparalogis = "INVERSE PARALOGISTIC DISTRIBUTION",
trgamma = "TRANSFORMED GAMMA DISTRIBUTION",
invtrgamma = "INVERSE TRANSFORMED GAMMA DISTRIBUTION",
invgamma = "INVERSE GAMMA DISTRIBUTION",
weibull = "WEIBULL DISTRIBUTION",
invweibull = "INVERSE WEIBULL DISTRIBUTION",
invexp = "INVERSE EXPONENTIAL DISTRIBUTION",
pareto1 = "SINGLE PARAMETER PARETO DISTRIBUTION",
lgamma = "LOGGAMMA DISTRIBUTION",
genbeta = "GENERALIZED BETA DISTRIBUTION",
phtype = "PHASE-TYPE DISTRIBUTION",
gamma = "GAMMA DISTRIBUTION",
exp = "EXPONENTIAL DISTRIBUTION",
chisq = "CHI-SQUARE DISTRIBUTION",
lnorm = "LOGNORMAL DISTRIBUTION",
invgauss = "INVERSE GAUSSIAN DISTRIBUTION",
norm = "NORMAL DISTRIBUTION",
beta = "BETA DISTRIBUTION",
unif = "UNIFORM DISTRIBUTION")
if (missing(xlim))
{
qf <- match.fun(paste("q", fun, sep = ""))
formals(qf)[names(par)] <- par
xlim <- c(0, qf(0.999))
}
k <- seq.int(4)
limit <- seq(0, xlim[2], len = 10)
mfrow = c(ceiling(length(what) / 2), 2)
op <- par(mfrow = mfrow, oma = c(0, 0, 2, 0))
for (t in what)
{
f <- match.fun(paste(t, fun, sep = ""))
formals(f)[names(par)] <- par
main <- switch(t,
"d" = "Probability Density Function",
"p" = "Cumulative Distribution Function",
"m" = "Raw Moments",
"lev" = "Limited Expected Value Function",
"mgf" = "Moment Generating Function")
if (t == "m")
plot(k, f(k), type = "l", col = 4, lwd = 2, main = main)
else if (t == "lev")
plot(limit, f(limit), type = "l", col = 4, lwd = 2, main = main)
else if (t == "mgf")
curve(f(x), xlim = c(0, 2), col = 4, lwd = 2, main = main)
else
curve(f(x), xlim = xlim, col = 4, lwd = 2, main = main)
title(main = dist, outer = TRUE)
}
par(op)
}
###
### DATA SETS
###
## The package includes the individual dental claims and grouped
## dental claims data sets often referred to in Klugman, Panjer &
## Willmot (1998, 2004)
data(dental); dental
data(gdental); gdental
###
### PROBABILITY LAWS
###
## Illustration of the new probability laws functions provided by the
## package.
## TRANSFORMED BETA FAMILY
## Transformed beta distribution
showgraphs("trbeta", list(shape1 = 3, shape2 = 4, shape3 = 5, scale = 10))
## Generalized Pareto distribution
showgraphs("genpareto", list(shape1 = 10, shape2 = 4, scale = 10))
## Burr distribution
showgraphs("burr", list(shape1 = 3, shape2 = 4, scale = 10))
## Inverse Burr distribution
showgraphs("invburr", list(shape1 = 3, shape2 = 6, scale = 10))
## Pareto distribution
showgraphs("pareto", list(shape = 10, scale = 10))
## Inverse Pareto distribution
showgraphs("invpareto", list(shape = 4, scale = 1), what = c("d", "p"))
## Loglogistic distribution
showgraphs("llogis", list(shape = 6, scale = 10))
## Paralogistic distribution
showgraphs("paralogis", list(shape = 3, scale = 10))
## Inverse paralogistic distribution
showgraphs("invparalogis", list(shape = 6, scale = 10))
## TRANSFORMED GAMMA FAMILY
## Transformed gamma distribution
showgraphs("trgamma", list(shape1 = 3, shape2 = 1, scale = 10))
## Inverse transformed gamma distribution
showgraphs("invtrgamma", list(shape1 = 3, shape2 = 2, scale = 10))
## Inverse gamma distribution
showgraphs("invgamma", list(shape = 6, scale = 10))
## Weibull distribution ('mweibull' and 'levweibull')
showgraphs("weibull", list(shape = 1.5, scale = 10))
## Inverse Weibull distribution
showgraphs("invweibull", list(shape = 6, scale = 10))
## Inverse exponential distribution
showgraphs("invexp", list(rate = 1), what = c("d", "p"))
## OTHER DISTRIBUTIONS
## Single parameter Pareto distribution
showgraphs("pareto1", list(shape = 5, min = 10), xlim = c(0, 50))
## Loggamma distribution
showgraphs("lgamma", list(shapelog = 2, ratelog = 5))
## Generalized beta distribution
showgraphs("genbeta", list(shape1 = 1, shape2 = 2, shape3 = 3, scale = 2))
## Phase-type distribution
showgraphs("phtype", list(prob = c(0.5614, 0.4386), rates = matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)), what = c("d", "p", "m", "mgf"), xlim = c(0.001, 5))
## DISTRIBUTIONS ALREADY IN R
## Gamma distribution
showgraphs("gamma", list(shape = 3, rate = 5), what = c("m", "lev", "mgf"))
## Chi-square distribution
showgraphs("chisq", list(df = 3), what = c("m", "lev", "mgf"))
## Exponential distribution
showgraphs("exp", list(rate = 5), what = c("m", "lev", "mgf"))
## Lognormal distribution
showgraphs("lnorm", list(meanlog = 1, sdlog = 1), what = c("m", "lev"))
## Inverse gaussian distribution (from package SuppDists)
showgraphs("invgauss", list(nu = 1, lambda = 10), what = c("m", "lev", "mgf"), xlim = c(0, 10))
## Normal distribution
showgraphs("norm", list(mean = 0, sd = 1), what = c("m", "mgf"))
## Beta distribution
showgraphs("beta", list(shape1 = 1, shape2 = 2), what = c("m", "lev"))
## Uniform distribution
showgraphs("unif", list(min = 0, max = 1), what = c("m", "lev", "mgf"))
###
### GROUPED DATA MANIPULATION
###
## Creation of grouped data objects
x <- grouped.data(groups = c(0, 25, 50, 100, 150, 250, 500),
line1 = c(30, 31, 57, 42, 65, 84),
line2 = c(26, 33, 31, 19, 16, 11))
x
## Extraction and replacement: only "[" and "[<-" are officially
## supported.
x[, 1] # group boundaries
x[1] # notice the difference
x[, -1] # group frequencies
x[1:3,] # first 3 groups
x[1, 2] <- 22; x # frequency replacement
x[1, 1] <- c(0, 20); x # boundary replacement
## Mean, variance and standard deviation for grouped data objects.
mean(x)
var(x)
sd(x)
## In the sequel, only the first frequencies column is considered.
x <- x[, -3]
## Function 'hist' handles individual data only. We provide a method
## for grouped data.
hist(x)
## Function 'ogive' returns a function to compute the ogive of grouped
## data in any point, much like 'ecdf' does for individual data.
## Methods also exist to extract the group boundaries ('knots') and
## to plot the ogive.
Fnt <- ogive(x)
summary(Fnt)
knots(Fnt) # group boundaries
Fnt(knots(Fnt)) # ogive at group boundaries
plot(Fnt) # plot of the ogive
## The method of 'quantile' for grouped data objects computes linearly
## smoothed quantiles, that is the inverse of the ogive in various
## points.
quantile(x)
Fnt(quantile(x))
## The method of 'summary' for grouped data objects returns the
## quantiles and the mean in a single object.
summary(x)
###
### EMPIRICAL MOMENTS CALCULATION
###
## Function 'emm' computes the k-th empirical moment of a sample,
## whether it is individual or grouped data.
emm(dental) # == mean(dental)
emm(gdental) # == mean(gdental)
emm(dental, order = 1:3) # first three moments
emm(gdental, order = 1:3) # idem
## Function 'elev' is similar to 'ecdf' and 'ogive' in that it returns
## a function to compute the empirical limited expected value (first
## limited moment) for any limit. There are methods for individual and
## grouped data.
lev <- elev(dental)
lev(knots(lev)) # ELEV at data points
plot(lev, type = "o", pch = 19) # plot of the ELEV function
lev <- elev(gdental)
lev(knots(lev)) # ELEV at data points
plot(lev, type = "o", pch = 19) # plot of the ELEV function
###
### MINIMUM DISTANCE ESTIMATION
###
## Maximum likelihood estimation (for individual data) is well covered
## by 'fitdistr' in package MASS. We provide function 'mde' to fit
## models using three distance minimization techniques: Cramer-von
## Mises (for individual and grouped data), chi-square and layer
## average severity (both grouped data only). Usage (and inner
## working) is very similar to 'fitdistr'.
mde(dental, pexp, start = list(rate = 1/200), measure = "CvM")
mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM")
mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square")
mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS")
###
### COVERAGE MODIFICATIONS
###
## Function 'coverage' is useful to obtain the probability density
## function (pdf) or cumulative distribution function (cdf) of a loss
## random variable under coverage modifications.
f <- coverage(dgamma, pgamma, deductible = 1, limit = 7)
curve(dgamma(x, 3), xlim = c(0, 10), ylim = c(0, 0.3)) # original
curve(f(x, 3), xlim = c(0.01, 5.99), col = 4, add = TRUE) # modified
x <- rgamma(1000, 3, 1) # sample of claim amounts
x <- pmin(x, 7)[x > 1] - 1 # deductible and limit
library(MASS) # for ML estimation
m <- mean(x) # empirical mean
v <- var(x) # empirical variance
(p <- fitdistr(x, f, start = list(shape = m^2/v, rate = m/v))$estimate ) # MLE
hist(x + 1, breaks = 0:10, prob = TRUE) # histogram of observed data
curve(dgamma(x, p[1], p[2]), add = TRUE) # fit of underlying distribution
par(op)
|