1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* Program: REALFFT.C
* Author: Philip VanBaren
* Date: 2 September 1993
*
* Description: These routines perform an FFT on real data.
* On a 486/33 compiled using Borland C++ 3.1 with full
* speed optimization and a small memory model, a 1024 point
* FFT takes about 16ms.
* This code is for integer data, but could be converted
* to float or double simply by changing the data types
* and getting rid of the bit-shifting necessary to prevent
* overflow/underflow in fixed-point calculations.
*
* Note: Output is BIT-REVERSED! so you must use the BitReversed to
* get legible output, (i.e. Real_i = buffer[ BitReversed[i] ]
* Imag_i = buffer[ BitReversed[i]+1 ] )
* Input is in normal order.
*
* Copyright (C) 1995 Philip VanBaren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* For Borland C++/TASM you may define the flag ASMFFTCODE in order to use the
* assembly code for the FFT. This will skip the compilation of the C version
* of the routine; you must be sure to add realffta.asm to your makefile
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
int *BitReversed;
short *SinTable;
int Points = 0;
/*
* Initialize the Sine table and Twiddle pointers (bit-reversed pointers)
* for the FFT routine.
*/
void InitializeFFT(int fftlen)
{
int i;
int temp;
int mask;
/*
* FFT size is only half the number of data points
* The full FFT output can be reconstructed from this FFT's output.
* (This optimization can be made since the data is real.)
*/
Points = fftlen;
if((SinTable=(short *)malloc(Points*sizeof(short)))==NULL)
{
puts("Error allocating memory for Sine table.");
exit(1);
}
if((BitReversed=(int *)malloc(Points/2*sizeof(int)))==NULL)
{
puts("Error allocating memory for BitReversed.");
exit(1);
}
for(i=0;i<Points/2;i++)
{
temp=0;
for(mask=Points/4;mask>0;mask >>= 1)
temp=(temp >> 1) + (i&mask ? Points/2 : 0);
BitReversed[i]=temp;
}
for(i=0;i<Points/2;i++)
{
register double s,c;
s=floor(-32768.0*sin(2*M_PI*i/(Points))+0.5);
c=floor(-32768.0*cos(2*M_PI*i/(Points))+0.5);
if(s>32767.5) s=32767;
if(c>32767.5) c=32767;
SinTable[BitReversed[i] ]=(short)s;
SinTable[BitReversed[i]+1]=(short)c;
}
}
/*
* Free up the memory allotted for Sin table and Twiddle Pointers
*/
void EndFFT()
{
free(BitReversed);
free(SinTable);
Points=0;
}
/* Include this only if you don't use the REALFFTA.ASM routine */
/* This is for DOS only */
#ifndef ASMFFTCODE
short *A,*B;
short *sptr;
short *endptr1,*endptr2;
int *br1,*br2;
long HRplus,HRminus,HIplus,HIminus;
/*
* Actual FFT routine. Must call InitializeFFT(fftlen) first!
*/
void RealFFT(short *buffer)
{
int ButterfliesPerGroup=Points/4;
endptr1=buffer+Points;
/*
* Butterfly:
* Ain-----Aout
* \ /
* / \
* Bin-----Bout
*/
while(ButterfliesPerGroup>0)
{
A=buffer;
B=buffer+ButterfliesPerGroup*2;
sptr=SinTable;
while(A<endptr1)
{
register short sin=*sptr;
register short cos=*(sptr+1);
endptr2=B;
while(A<endptr2)
{
long v1=((long)*B*cos + (long)*(B+1)*sin) >> 15;
long v2=((long)*B*sin - (long)*(B+1)*cos) >> 15;
*B=(*A+v1)>>1;
*(A++)=*(B++)-v1;
*B=(*A-v2)>>1;
*(A++)=*(B++)+v2;
}
A=B;
B+=ButterfliesPerGroup*2;
sptr+=2;
}
ButterfliesPerGroup >>= 1;
}
/*
* Massage output to get the output for a real input sequence.
*/
br1=BitReversed+1;
br2=BitReversed+Points/2-1;
while(br1<=br2)
{
register long temp1,temp2;
short sin=SinTable[*br1];
short cos=SinTable[*br1+1];
A=buffer+*br1;
B=buffer+*br2;
HRplus = (HRminus = *A - *B ) + (*B << 1);
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) << 1);
temp1 = ((long)sin*HRminus - (long)cos*HIplus) >> 15;
temp2 = ((long)cos*HRminus + (long)sin*HIplus) >> 15;
*B = (*A = (HRplus + temp1) >> 1) - temp1;
*(B+1) = (*(A+1) = (HIminus + temp2) >> 1) - HIminus;
br1++;
br2--;
}
/*
* Handle DC bin separately
*/
buffer[0]+=buffer[1];
buffer[1]=0;
}
#endif
|