1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
/*
FLRW background growth functions
Copyright (C) 2013 Boud Roukema, Jan Ostrowski
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
See also http://www.gnu.org/licenses/gpl.html
*/
/*! \file growth_function.c
* Calculates the growth function and its derivatives in FLRW
* background.
*
* All values of the growth functions are scaled to match the \f$ a_0
* = 1 \f$ (scale factor at the present time).
*/
#include <stdio.h>
#include <sys/types.h>
#include "config.h"
#include <math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_deriv.h>
/* for malloc_usable_size if available */
#ifdef __GNUC__
#include <malloc.h>
#endif
#include "lib/inhomog.h"
#define KASAI_GROWTH 1
/* *
FLRW-background growth functions.
All q_growth values are scaled to match
a_0 = 1 for the scale factor. This should
not affect external values of the scale
factor.
*/
/* * growth function for GSL differentiation */
double growth_FLRW_func(
double t_background, void * params)
{
struct background_cosm_params_s background_cosm_params =
*(struct background_cosm_params_s *) params;
int want_verbose = 0;
return growth_FLRW(&background_cosm_params,
t_background,
want_verbose);
}
/* * growth function for direct use */
/*! \brief Calculates the growth function for the FLRW background.
*
* If the model chosen in the background_cosm_params_s structure is the
* EdS model, calculates the growth function through the \ref a_EdS
* function (for a detailed description, see FLRW_background.c).
*
* If the chosen model is a flat FLRW model (also chosen through the
* background_cosm_params_s structure), calculates the growth function
* according to Bildhauer et al. 1992. \latexonly
* (\href{http://adsabs.harvard.edu/abs/1992A%26A...263...23B}
* {1992A\&A...263...23B}). \endlatexonly
*
* If the choice of the model is not specified or if a flat FLRW model
* is chosen with non-zero curvature, prints out an error message (only
* if \a want_verbose is set to 1).
*
* If no error occurs, returns \a q_growth.
*
* \param [in] background_cosm_params pointer to the
* background_cosm_params_s containing relevant cosmological parameters
* \param [in] t_background time values matrix
* \param [in] want_verbose control parameter; defined and explained in
* biscale_partition.c
*/
double growth_FLRW(/* INPUTS: */
struct background_cosm_params_s * background_cosm_params,
double t_background,
int want_verbose
/* OUTPUTS: */
){
double a_scale_factor;
double q_growth;
#ifdef KASAI_GROWTH
/* coefficients in Eq (5) & (10)--(16) Kasai 2010 */
const double b1 = 619226202351.0/527102715964.0; /* 1.175 */
const double b2 = 12478731282519.0/40730664415400.0; /* 0.3064 */
const double b3 = 232758215919527.0/43467765064114880.0; /* 0.005355 */
const double c1 = 88964947071.0/47918428724.0; /* 1.875 */
const double c2 = 2445658735707.0/2395921436200.0; /* 1.021 */
const double c3 = 17010766061223.0/111170754639680.0; /* 0.1530 */
/* Eq (6) Kasai 2010 */
double x_eq5_K;
double x_eq5_K2;
double x_eq5_K3;
#else
double OmLam0_a_cubed;
double x_eq30_BildhauerBuchert1992;
const double two_thirds = 2.0/3.0;
const double five_sixths = 5.0/6.0;
/* Bildhauer & Buchert 1992 Eq (31) normalisation:
5/6 beta(5/6,2/3) \equiv
2 / sqrt(pi) * gamma(11/6) * gamma(2/3) */
const double BildBuchEq31_norm = 1.43728308846099;
#endif
if(1==background_cosm_params->EdS){
q_growth = a_EdS( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
return q_growth;
}else if( (!(background_cosm_params->flatFLRW) || background_cosm_params->Omm_0 > 1.0) && want_verbose){
printf("t_flatFLRW ERROR: called for invalid bg model.\n");
exit(1);
};
/* internally to this routine must be scaled to a_0 = 1 */
a_scale_factor = a_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
#ifdef KASAI_GROWTH
/* Eq (5) Kasai arXiv:1012.2671 */
x_eq5_K = (1-background_cosm_params->Omm_0)/
background_cosm_params->Omm_0 *
a_scale_factor * a_scale_factor * a_scale_factor;
x_eq5_K2 = x_eq5_K * x_eq5_K;
x_eq5_K3 = x_eq5_K2 * x_eq5_K;
q_growth = a_scale_factor * sqrt(1.0 + x_eq5_K) *
(1.0 + b1*x_eq5_K + b2*x_eq5_K2 + b3*x_eq5_K3)/
(1.0 + c1*x_eq5_K + c2*x_eq5_K2 + c3*x_eq5_K3);
#else
OmLam0_a_cubed = background_cosm_params->OmLam_0 *
exp(3.0 * log(a_scale_factor));
x_eq30_BildhauerBuchert1992 = OmLam0_a_cubed /
(background_cosm_params->Omm_0 + OmLam0_a_cubed);
/* Eq (28) Bildhauer & Buchert 1992 */
q_growth = BildBuchEq31_norm *
gsl_sf_beta_inc (five_sixths, two_thirds,
x_eq30_BildhauerBuchert1992) *
exp(log( background_cosm_params->Omm_0 /
background_cosm_params->OmLam_0 )/3.0) *
sqrt( 1.0 +
background_cosm_params->Omm_0 /
OmLam0_a_cubed );
#endif
/* DEBUG ONLY */
/* q_growth = a_scale_factor; */
return q_growth;
}
/* * growth function for GSL differentiation */
double dot_growth_FLRW_func(
double t_background, void * params)
{
struct background_cosm_params_s background_cosm_params =
*(struct background_cosm_params_s *) params;
int want_verbose = 0;
return dot_growth_FLRW(&background_cosm_params,
t_background,
want_verbose);
}
/* First derivative of flat FLRW model growth function with respect to
the scale factor (not time); see notes on Kasai 2010 below.
Not normally intended for external use.
*/
static double dD_da_func(double aa, double omr);
static double dD_da_func(double aa, double omr){
double dD_da;
double a3omr; /* aa^3 * omr */
/* maxima - Eq (5) Kasai 2010 arXiv:1012.2671 :
D : a * sqrt(1+x) * (1 + 1.175*x + 0.3064*x^2 + 0.005355*x^3)/ (1 + 1.857*x + 1.021*x^2 + 0.1530*x^3), x: omr*a^3;
diff(D, a, 1), factor;
string(%);
*/
a3omr = pow(aa,3)*omr;
dD_da =
(819315.0e0 *pow(a3omr,7) +
2980287.0e0 *pow(a3omr,6) +
66204367.0e0 *pow(a3omr,5) +
432092178.0e0 *pow(a3omr,4) +
1276790680.0e0 *pow(a3omr,3) +
1902310000.0e0 *pow(a3omr,2) +
1394400000.0e0* a3omr +
400000000.0e0)/
(400.0e0*sqrt( a3omr + 1.0e0)*
pow( (153.0e0 *pow(a3omr,3) +
1021.0e0 *pow(a3omr,2) +
1857.0e0 *a3omr +
1000.0e0), 2) );
return dD_da;
}
/* * growth function time derivative */
/*! \brief Calculates first time derivative of the FLRW growth factor.
*
* The calculation depends on the model used. For EdS, uses \ref
* a_dot_EdS function (for a more detailed description, go to
* FLRW_background.c).
*
* If the choice of the model is not specified or if a flat FLRW model
* is chosen with non-zero curvature, prints out an error message (only
* if \a want_verbose is set to 1).
*
* For flat FLRW model, uses predefined GSL library routines to
* calculate the first derivative. The routine used depends on the
* relative step size (in comparison with \a t_background values). If
* \a t_background value is bigger than \f$ 5h \f$, where \f$ h \f$ is
* the step value, then the derivation happens according to the \a
* gsl_deriv_central routine; if not, the routine used is \a
* gsl_deriv_forward.
*
* If no error occurs, returns \a dq_dt.
*
* \param [in] background_cosm_params pointer to the
* background_cosm_params_s containing relevant cosmological parameters
* \param [in] t_background time values matrix
* \param [in] want_verbose control parameter; defined and explained in
* biscale_partition.c
*/
double dot_growth_FLRW(/* INPUTS: */
struct background_cosm_params_s * background_cosm_params,
double t_background,
int want_verbose
/* OUTPUTS: */
){
#define DELTA_T_DERIV_TOL 1e-5
double dq_dt;
#ifdef KASAI_GROWTH
double aa, a_dot;
double omr; /* (1-Omega_{m0})/Omega_{m0} - eq 6 Kasai 2010 */
#else
gsl_function F_gsl;
double h_step;
double abserr;
#endif
if(1==background_cosm_params->EdS){
dq_dt = a_dot_EdS( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
return dq_dt;
}else if( (!(background_cosm_params->flatFLRW) || background_cosm_params->Omm_0 > 1.0) && want_verbose){
printf("t_flatFLRW ERROR: called for invalid bg model.\n");
exit(1);
};
#ifdef KASAI_GROWTH
/* internally to this routine must be scaled to a_0 = 1 */
aa = a_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
a_dot = a_dot_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
omr = (1-background_cosm_params->Omm_0)/
background_cosm_params->Omm_0;
dq_dt = dD_da_func(aa, omr) * a_dot;
#else
F_gsl.function = &growth_FLRW_func;
F_gsl.params = background_cosm_params;
/* use DELTA_T_DERIV_TOL to make a relative step size guess */
h_step = DELTA_T_DERIV_TOL * t_background;
if(t_background > 5*h_step){
gsl_deriv_central(&F_gsl, t_background,
h_step,
&dq_dt,&abserr);
}else{
gsl_deriv_forward(&F_gsl, t_background,
h_step,
&dq_dt,&abserr);
};
#endif
return dq_dt;
}
/* * growth function second derivative wrt time */
/*! \brief Calculates second time derivative of the FLRW growth factor.
*
* The calculation depends on the model used. For EdS, uses \ref
* a_ddot_EdS function (for a more detailed description, go to
* FLRW_background.c).
*
* If the choice of the model is not specified or if a flat FLRW model
* is chosen with non-zero curvature, prints out an error message (only
* if \a want_verbose is set to 1).
*
* For flat FLRW model, uses predefined GSL library routines to
* calculate the first derivative. The routine used depends on the
* relative step size (in comparison with \a t_background values). If
* \a t_background value is bigger than \f$ 5h \f$, where \f$ h \f$ is
* the step value, then the derivation happens according to the \a
* gsl_deriv_central routine; if not, the routine used is \a
* gsl_deriv_forward.
*
* If no error occurs, returns \a d2q_dt2.
*
* \param [in] background_cosm_params pointer to the
* background_cosm_params_s containing relevant cosmological parameters
* \param [in] t_background time values matrix
* \param [in] want_verbose control parameter; defined and explained in
* biscale_partition.c
*/
double ddot_growth_FLRW(/* INPUTS: */
struct background_cosm_params_s * background_cosm_params,
double t_background,
int want_verbose
/* OUTPUTS: */
){
/* non-integer factor greater than DELTA_T_DERIV_TOL */
#define DELTA_T_DDOT_DERIV_TOL 2.3e-5
double d2q_dt2;
#ifdef KASAI_GROWTH
double aa, a_dot, a_ddot;
double omr; /* (1-Omega_{m0})/Omega_{m0} - eq 6 Kasai 2010 */
double d2D_da2;
double a3omr; /* aa^3 * omr */
#else
gsl_function F_gsl;
double h_step;
double abserr;
#endif
if(1==background_cosm_params->EdS){
d2q_dt2 = a_ddot_EdS( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
return d2q_dt2;
}else if( (!(background_cosm_params->flatFLRW) || background_cosm_params->Omm_0 > 1.0) && want_verbose){
printf("t_flatFLRW ERROR: called for invalid bg model.\n");
exit(1);
};
#ifdef KASAI_GROWTH
/* internally to this routine must be scaled to a_0 = 1 */
aa = a_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
a_dot = a_dot_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
a_ddot = a_ddot_flatFLRW( background_cosm_params,
t_background,
want_verbose ) /
background_cosm_params->inhomog_a_scale_factor_now;
omr = (1-background_cosm_params->Omm_0)/
background_cosm_params->Omm_0;
/* maxima - Eq (5) Kasai 2010:
D : a * sqrt(1+x) * (1 + 1.175*x + 0.3064*x^2 + 0.005355*x^3)/ (1 + 1.857*x + 1.021*x^2 + 0.1530*x^3), x: omr*a^3;
diff(D, a, 2), factor;
string(%);
*/
/*
(3*a^2*omr*
(125355195*a^30*omr^10 + 3977329554*a^27*omr^9 - 2546850087*a^24*omr^8 - 206436376394*a^21*omr^7 - 1234623769273*a^18*omr^6 - 3925947239328*a^15*omr^5 - 7726431851616*a^12*omr^4 - 9613741100480*a^9*omr^3 - 7352622720000*a^6*omr^2 - 3156361600000*a^3*omr - 582400000000))
/(800*(a^3*omr + 1)^(3/2)*
(153*a^9*omr^3 + 1021* a^6*omr^2 + 1857*a^3*omr + 1000)^3)
*/
a3omr = pow(aa,3)*omr;
d2D_da2 = (3.0e0 *pow(aa,2)*omr*
(125355195.0e0 * pow(a3omr,10) +
3977329554.0e0 *pow(a3omr,9) -
2546850087.0e0 *pow(a3omr,8) -
206436376394.0e0 *pow(a3omr,7) -
1234623769273.0e0 *pow(a3omr,6) -
3925947239328.0e0 *pow(a3omr,5) -
7726431851616.0e0 * pow(a3omr,4) -
9613741100480.0e0 * pow(a3omr,3) -
7352622720000.0e0 * pow(a3omr,2) -
3156361600000.0e0 * a3omr-
582400000000.0e0))/
(800.0e0*
pow((a3omr + 1.0e0),1.5)*
pow((153.0e0 * pow(a3omr,3) +
1021.0e0 *pow(a3omr,2) +
1857.0e0 *a3omr +
1000.0e0),3)
);
/* \ddot{y} = y'' \dot{x}^2 + y' \ddot{x} where ' = d/dx */
d2q_dt2 = d2D_da2 *a_dot *a_dot +
dD_da_func(aa, omr) * a_ddot;
#else
F_gsl.function = &dot_growth_FLRW_func;
F_gsl.params = background_cosm_params;
/* use DELTA_T_DDOT_DERIV_TOL as a relative step size guess */
h_step = DELTA_T_DDOT_DERIV_TOL * t_background;
if(t_background > 5*h_step){
gsl_deriv_central(&F_gsl, t_background,
h_step,
&d2q_dt2,&abserr);
}else{
gsl_deriv_forward(&F_gsl, t_background,
h_step,
&d2q_dt2,&abserr);
};
#endif
return d2q_dt2;
}
|