1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
IMMS: Intelligent Multimedia Management System
Copyright (C) 2001-2009 Michael Grigoriev
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <torch/MatDataSet.h>
#include <torch/TwoClassFormat.h>
#include <torch/ClassMeasurer.h>
#include <torch/MSEMeasurer.h>
#include <torch/QCTrainer.h>
#include <torch/CmdLine.h>
#include <torch/Random.h>
#include <torch/MeanVarNorm.h>
#include <torch/SVMClassification.h>
#include <torch/KFold.h>
#include <torch/DiskXFile.h>
#include <torch/ClassFormatDataSet.h>
#include <assert.h>
#include <iostream>
#include <model/model.h>
#include <immscore/immsutil.h>
const string AppName = "train_model";
using namespace Torch;
using namespace std;
int main(int argc, char **argv)
{
char *file;
real c_cst, stdv = 12;
real accuracy, cache_size;
int iter_shrink, k_fold;
char *model_file;
Allocator *allocator = new Allocator;
//=================== The command-line ==========================
// Construct the command line
CmdLine cmd;
// Train mode
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addText("\nModel Options:");
cmd.addRCmdOption("-c", &c_cst, 100., "trade off cst between error/margin");
cmd.addRCmdOption("-std", &stdv, 12,
"the std parameter in the gaussian kernel", true);
cmd.addText("\nLearning Options:");
cmd.addRCmdOption("-e", &accuracy, 0.01, "end accuracy");
cmd.addRCmdOption("-m", &cache_size, 50., "cache size in Mo");
cmd.addICmdOption("-h", &iter_shrink,
100, "minimal number of iterations before shrinking");
cmd.addText("\nMisc Options:");
// KFold mode (one difference with previous mode: no model is available)
cmd.addMasterSwitch("--kfold");
cmd.addText("\nArguments:");
cmd.addSCmdArg("file", &file, "the train file");
cmd.addICmdArg("k", &k_fold, "number of folds");
cmd.addText("\nModel Options:");
cmd.addRCmdOption("-c", &c_cst, 100.,
"trade off cst between error/margin");
cmd.addRCmdOption("-std", &stdv, 12,
"the std parameter in the gaussian kernel", true);
cmd.addText("\nLearning Options:");
cmd.addRCmdOption("-e", &accuracy, 0.01, "end accuracy");
cmd.addRCmdOption("-m", &cache_size, 50., "cache size in Mo");
cmd.addICmdOption("-h", &iter_shrink, 100,
"minimal number of iterations before shrinking");
// Test mode
cmd.addMasterSwitch("--test");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addSCmdArg("file", &file, "the test file");
// Test mode
cmd.addMasterSwitch("--validate");
cmd.addText("\nArguments:");
cmd.addSCmdArg("model", &model_file, "the model file");
cmd.addSCmdArg("file", &file, "the test file");
// Read the command line
int mode = cmd.read(argc, argv);
DiskXFile *model = NULL;
if(mode >= 2)
model = new(allocator) DiskXFile(model_file, "r");
if(mode < 2)
Random::seed();
cmd.setWorkingDirectory(".");
//=================== Create the SVM... =========================
Kernel *kernel = new(allocator) GaussianKernel(1./(stdv*stdv));
SVM *svm = new(allocator) SVMClassification(kernel);
if(mode < 2)
{
svm->setROption("C", c_cst);
svm->setROption("cache size", cache_size);
}
//=================== DataSets & Measurers... ===================
// Create the training dataset
MatDataSet *mat_data =
new(allocator) MatDataSet(file, -1, 1, false, -1, false);
MatDataSet *orig_mat_data =
new(allocator) MatDataSet(file, -1, 1, false, -1, false);
Sequence *class_labels = new(allocator) Sequence(2, 1);
class_labels->frames[0][0] = -1;
class_labels->frames[0][1] = 1;
MeanVarNorm *mv_norm = new(allocator) MeanVarNorm(mat_data);
if(mode >= 2)
mv_norm->loadXFile(model);
mat_data->preProcess(mv_norm);
DataSet *data = new(allocator) ClassFormatDataSet(mat_data, class_labels);
DataSet *orig_data =
new(allocator) ClassFormatDataSet(orig_mat_data, class_labels);
// The list of measurers...
MeasurerList measurers;
TwoClassFormat *class_format = new(allocator) TwoClassFormat(data);
ClassMeasurer *class_meas = new(allocator) ClassMeasurer(
svm->outputs, data, class_format, cmd.getXFile("the_class_err"));
if(mode > 0)
measurers.addNode(class_meas);
// Reload the model in test mode
if(mode >= 2)
svm->loadXFile(model);
//=================== The Trainer ===============================
QCTrainer trainer(svm);
if(mode == 0)
{
trainer.setROption("end accuracy", accuracy);
trainer.setIOption("iter shrink", iter_shrink);
}
//=================== Let's go... ===============================
// Train
if(mode == 0)
{
trainer.train(data, NULL);
message("%d SV with %d at bounds", svm->n_support_vectors,
svm->n_support_vectors_bound);
DiskXFile model_(model_file, "w");
mv_norm->saveXFile(&model_);
svm->saveXFile(&model_);
}
// KFold
if(mode == 1)
{
KFold k(&trainer, k_fold);
k.crossValidate(data, NULL, &measurers);
}
// Test
if(mode >= 2) {
trainer.test(&measurers);
SVMSimilarityModel model;
float correct = 0, wrong = 0;
for (int t = 0; t < data->n_examples; t++) {
data->setExample(t);
orig_data->setExample(t);
svm->forward(data->inputs);
int true_class = class_format->getClass(data->targets->frames[0]);
int obs_class = class_format->getClass(svm->outputs->frames[0]);
(true_class == obs_class ? correct : wrong) += 1;
float score = svm->outputs->frames[0][0] / 3;
assert(obs_class > 0 || score < 0);
if (mode == 3) {
float model_score = model.evaluate(orig_data->inputs->frames[0]);
if (fabs(score - model_score) > 0.01)
cout << "Er: " << score << " vs. " << model_score << endl;
}
}
cout << "TOTAL : " << correct + wrong << endl;
cout << "CORRECT : " << correct << endl;
cout << "WRONG : " << wrong << endl;
cout << "ERROR : " << wrong / (correct + wrong) << endl;
}
delete allocator;
return 0;
}
|