1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/*
* Lower tail quantile for standard normal distribution function.
*
* This function returns an approximation of the inverse cumulative
* standard normal distribution function. I.e., given P, it returns
* an approximation to the X satisfying P = Pr{Z <= X} where Z is a
* random variable from the standard normal distribution.
*
* The algorithm uses a minimax approximation by rational functions
* and the result has a relative error whose absolute value is less
* than 1.15e-9.
*
* Author: Peter J. Acklam
* Time-stamp: 2002-06-09 18:45:44 +0200
* E-mail: jacklam@math.uio.no
* WWW URL: http://home.online.no/~pjacklam/notes/invnorm
*
* C implementation adapted from Peter's public domain Perl version by Chad
* Sprouse
*/
#ifndef __LTQNORM_H
#define __LTQNORM_H
#include <math.h>
#include <errno.h>
/* Coefficients in rational approximations. */
static const double a[] =
{
-3.969683028665376e+01,
2.209460984245205e+02,
-2.759285104469687e+02,
1.383577518672690e+02,
-3.066479806614716e+01,
2.506628277459239e+00
};
static const double b[] =
{
-5.447609879822406e+01,
1.615858368580409e+02,
-1.556989798598866e+02,
6.680131188771972e+01,
-1.328068155288572e+01
};
static const double c[] =
{
-7.784894002430293e-03,
-3.223964580411365e-01,
-2.400758277161838e+00,
-2.549732539343734e+00,
4.374664141464968e+00,
2.938163982698783e+00
};
static const double d[] =
{
7.784695709041462e-03,
3.224671290700398e-01,
2.445134137142996e+00,
3.754408661907416e+00
};
#define LOW 0.02425
#define HIGH 0.97575
double ltqnorm(double p)
{
double q, r;
errno = 0;
if (p < 0 || p > 1)
{
errno = EDOM;
return 0.0;
}
else if (p == 0)
{
errno = ERANGE;
return -HUGE_VAL /* minus "infinity" */;
}
else if (p == 1)
{
errno = ERANGE;
return HUGE_VAL /* "infinity" */;
}
else if (p < LOW)
{
/* Rational approximation for lower region */
q = sqrt(-2*log(p));
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else if (p > HIGH)
{
/* Rational approximation for upper region */
q = sqrt(-2*log(1-p));
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else
{
/* Rational approximation for central region */
q = p - 0.5;
r = q*q;
return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
}
}
#endif // __LTQNORM_H
|