[go: up one dir, main page]

File: test_minimize.py

package info (click to toggle)
iminuit 2.30.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,660 kB
  • sloc: cpp: 14,591; python: 11,177; makefile: 11; sh: 5
file content (155 lines) | stat: -rw-r--r-- 4,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import pytest
from iminuit import minimize
import numpy as np
from numpy.testing import assert_allclose, assert_equal

opt = pytest.importorskip("scipy.optimize")


def func(x, *args):
    c = args[0] if args else 1
    return c + x[0] ** 2 + (x[1] - 1) ** 2 + (x[2] - 2) ** 2


def grad(x, *args):
    return 2 * (x - (0, 1, 2))


def test_simple():
    result = minimize(func, (1, 1, 1))
    assert_allclose(result.x, (0, 1, 2), atol=1e-8)
    assert_allclose(result.fun, 1)
    assert result.nfev > 0
    assert result.njev == 0


def test_gradient():
    result = minimize(func, (1, 1, 1), jac=grad)
    assert_allclose(result.x, (0, 1, 2), atol=1e-8)
    assert_allclose(result.fun, 1)
    assert result.nfev > 0
    assert result.njev > 0


def test_args():
    result = minimize(func, np.ones(3), args=(5,))
    assert_allclose(result.x, (0, 1, 2), atol=1e-8)
    assert_allclose(result.fun, 5)
    assert result.nfev > 0
    assert result.njev == 0


def test_callback():
    trace = []
    result = minimize(func, np.ones(3), callback=lambda x: trace.append(x.copy()))
    assert_allclose(result.x, (0, 1, 2), atol=1e-8)
    assert_allclose(result.fun, 1)
    assert result.nfev == len(trace)
    assert_allclose(trace[0], np.ones(3), atol=1e-2)
    assert_allclose(trace[-1], result.x, atol=1e-2)


def test_tol():
    ref = np.ones(2)

    def rosen(par):
        x, y = par
        return (1 - x) ** 2 + 100 * (y - x**2) ** 2

    r1 = minimize(rosen, (0, 0), tol=1)
    r2 = minimize(rosen, (0, 0), tol=1e-6)

    assert max(np.abs(r2.x - ref)) < max(np.abs(r1.x - ref))


def test_disp(capsys):
    minimize(lambda x: np.sum(x**2), 0)
    assert capsys.readouterr()[0] == ""
    minimize(lambda x: np.sum(x**2), 0, options={"disp": True})
    assert capsys.readouterr()[0] != ""


def test_hessinv():
    r = minimize(func, (1, 1, 1))
    href = np.zeros((3, 3))
    for i in range(3):
        href[i, i] = 0.5
    assert_allclose(r.hess_inv, href, atol=1e-8)


def test_unsupported():
    with pytest.raises(ValueError):
        minimize(func, (1, 1, 1), constraints=[])
    with pytest.raises(ValueError):
        minimize(func, (1, 1, 1), jac=True)


def test_call_limit():
    ref = minimize(func, (1, 1, 1))
    with pytest.warns(UserWarning):
        r1 = minimize(func, (1, 1, 1), options={"maxiter": 1})
    assert r1.nfev < ref.nfev
    assert not r1.success
    assert "Call limit" in r1.message

    with pytest.warns(DeprecationWarning):
        r2 = minimize(func, (1, 1, 1), options={"maxfev": 1})
    assert not r2.success
    assert r2.nfev == r1.nfev

    r3 = minimize(func, (1, 1, 1), options={"maxfun": 1})
    assert not r3.success
    assert r3.nfev == r1.nfev


def test_eps():
    ref = minimize(func, (1, 1, 1))
    r = minimize(func, (1, 1, 1), options={"eps": 1e-10})
    assert np.any(ref.x != r.x)
    assert_allclose(r.x, ref.x, atol=1e-9)


def test_bad_function():
    class Fcn:
        n = 0

        def __call__(self, x):
            self.n += 1
            return np.sum(x**2 + 1e-2 * (self.n % 3))

    r = minimize(Fcn(), [1], options={"maxfun": 100000000})
    assert not r.success
    assert "Estimated distance to minimum too large" in r.message


def test_bounds():
    r1 = minimize(func, (1.5, 1.7, 1.5), bounds=opt.Bounds((1, 1.5, 1), (2, 2, 2)))
    assert r1.success
    assert_allclose(r1.x, (1, 1.5, 2), atol=1e-2)
    r2 = minimize(func, (1.5, 1.7, 1.5), bounds=((1, 2), (1.5, 2), (1, 2)))
    assert r2.success
    assert_equal(r1.x, r2.x)


def test_method_warn():
    with pytest.raises(ValueError):
        minimize(func, (1.5, 1.7, 1.5), method="foo")


def test_hess_warn():
    with pytest.warns(UserWarning):
        minimize(func, (1.5, 1.7, 1.5), hess=True)


def test_unreliable_uncertainties():
    r = minimize(func, (1.5, 1.7, 1.5), options={"stra": 0})
    assert (
        r.message
        == "Optimization terminated successfully, but uncertainties are unrealiable."
    )


def test_simplex():
    r = minimize(func, (1.5, 1.7, 1.5), method="simplex", tol=1e-4)
    assert r.success
    assert_allclose(r.x, (0, 1, 2), atol=2e-3)