[go: up one dir, main page]

File: test_minuit.py

package info (click to toggle)
iminuit 2.30.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,660 kB
  • sloc: cpp: 14,591; python: 11,177; makefile: 11; sh: 5
file content (1758 lines) | stat: -rw-r--r-- 44,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
import platform
import pytest
import numpy as np
from numpy.testing import assert_allclose, assert_equal
from iminuit import Minuit
from iminuit.util import Param, make_func_code
from iminuit.warnings import IMinuitWarning, ErrordefAlreadySetWarning
from iminuit.typing import Annotated
from pytest import approx
from argparse import Namespace


@pytest.fixture
def debug():
    from iminuit._core import MnPrint

    prev = MnPrint.global_level
    MnPrint.global_level = 3
    MnPrint.show_prefix_stack(True)
    yield
    MnPrint.global_level = prev
    MnPrint.show_prefix_stack(False)


is_pypy = platform.python_implementation() == "PyPy"


def test_version():
    import iminuit

    assert iminuit.__version__


def func0(x, y):  # values = (2.0, 5.0), errors = (2.0, 1.0)
    return (x - 2.0) ** 2 / 4.0 + np.exp((y - 5.0) ** 2) + 10


def func0_grad(x, y):
    dfdx = (x - 2.0) / 2.0
    dfdy = 2.0 * (y - 5.0) * np.exp((y - 5.0) ** 2)
    return [dfdx, dfdy]


class Func1:
    errordef = 4

    def __call__(self, x, y):
        return func0(x, y) * 4


class Func2:
    errordef = 4

    def __init__(self):
        self.func_code = make_func_code(["x", "y"])

    def __call__(self, *arg):
        return func0(arg[0], arg[1]) * 4


def func4(x, y, z):
    return 0.2 * (x - 2.0) ** 2 + 0.1 * (y - 5.0) ** 2 + 0.25 * (z - 7.0) ** 2 + 10


def func4_grad(x, y, z):
    dfdx = 0.4 * (x - 2.0)
    dfdy = 0.2 * (y - 5.0)
    dfdz = 0.5 * (z - 7.0)
    return dfdx, dfdy, dfdz


def func5(x, long_variable_name_really_long_why_does_it_has_to_be_this_long, z):
    return (
        (x - 1) ** 2
        + long_variable_name_really_long_why_does_it_has_to_be_this_long**2
        + (z + 1) ** 2
    )


def func5_grad(x, long_variable_name_really_long_why_does_it_has_to_be_this_long, z):
    dfdx = 2 * (x - 1)
    dfdy = 2 * long_variable_name_really_long_why_does_it_has_to_be_this_long
    dfdz = 2 * (z + 1)
    return dfdx, dfdy, dfdz


def func6(x, m, s, a):
    return a / ((x - m) ** 2 + s**2)


class Correlated:
    def __init__(self):
        sx = 2
        sy = 1
        corr = 0.5
        cov = (sx**2, corr * sx * sy), (corr * sx * sy, sy**2)
        self.cinv = np.linalg.inv(cov)

    def __call__(self, x):
        return np.dot(x.T, np.dot(self.cinv, x))


def func_np(x):  # test numpy support
    return np.sum((x - 1) ** 2)


def func_np_grad(x):  # test numpy support
    return 2 * (x - 1)


data_y = [
    0.552,
    0.735,
    0.846,
    0.875,
    1.059,
    1.675,
    1.622,
    2.928,
    3.372,
    2.377,
    4.307,
    2.784,
    3.328,
    2.143,
    1.402,
    1.44,
    1.313,
    1.682,
    0.886,
    0.0,
    0.266,
    0.3,
]
data_x = list(range(len(data_y)))


def func_test_helper(f, grad=None, errordef=None):
    m = Minuit(f, x=0, y=0, grad=grad)
    if errordef:
        m.errordef = errordef
    m.migrad()
    val = m.values
    assert_allclose(val["x"], 2.0, rtol=2e-3)
    assert_allclose(val["y"], 5.0, rtol=2e-3)
    assert_allclose(m.fval, 11.0 * m.errordef, rtol=1e-3)
    assert m.valid
    assert m.accurate
    m.hesse()
    err = m.errors
    assert_allclose(err["x"], 2.0, rtol=1e-3)
    assert_allclose(err["y"], 1.0, rtol=1e-3)
    m.errors = (1, 2)
    assert_allclose(err["x"], 1.0, rtol=1e-3)
    assert_allclose(err["y"], 2.0, rtol=1e-3)
    return m


def test_mncontour_interpolated_1():
    m = Minuit(func0, 1, 1)
    m.migrad()

    # interpolated < size is ignored
    pts = m.mncontour("x", "y", size=20, interpolated=10)
    assert len(pts) == 21


def test_mncontour_interpolated_2():
    pytest.importorskip("scipy.interpolate")

    m = Minuit(func0, 1, 1)
    m.migrad()

    pts = m.mncontour("x", "y", size=20, interpolated=200)
    assert len(pts) == 200


def test_func0():
    m1 = func_test_helper(func0)
    m2 = func_test_helper(func0, grad=func0_grad)
    assert m1.ngrad == 0
    assert m2.ngrad > 0
    # check that providing gradient improves convergence
    assert m2.nfcn < m1.nfcn


def test_lambda():
    func_test_helper(lambda x, y: func0(x, y))


def test_Func1():
    func_test_helper(Func1())


def test_Func2():
    with pytest.warns(FutureWarning):
        func_test_helper(Func2())


def test_no_signature():
    def no_signature(*args):
        x, y = args
        return (x - 1) ** 2 + (y - 2) ** 2

    m = Minuit(no_signature, 3, 4)
    assert m.values == (3, 4)
    assert m.parameters == ("x0", "x1")

    m = Minuit(no_signature, x=1, y=2, name=("x", "y"))
    assert m.values == (1, 2)
    m.migrad()
    val = m.values
    assert_allclose((val["x"], val["y"], m.fval), (1, 2, 0), atol=1e-8)
    assert m.valid

    with pytest.raises(RuntimeError):
        Minuit(no_signature, x=1)

    with pytest.raises(RuntimeError):
        Minuit(no_signature, x=1, y=2)


def test_use_array_call():
    inf = float("infinity")
    m = Minuit(
        func_np,
        (1, 1),
        name=("a", "b"),
    )
    m.fixed = False
    m.errors = 1
    m.limits = (0, inf)
    m.migrad()
    assert m.parameters == ("a", "b")
    assert_allclose(m.values, (1, 1))
    m.hesse()
    c = m.covariance
    assert_allclose((c[("a", "a")], c[("b", "b")]), (1, 1))
    with pytest.raises(RuntimeError):
        Minuit(lambda *args: 0, [1, 2], name=["a", "b", "c"])


def test_release_with_none():
    m = Minuit(func0, x=0, y=0)
    m.fixed = (True, False)
    assert m.fixed == (True, False)
    m.fixed = None
    assert m.fixed == (False, False)


def test_parameters():
    m = Minuit(lambda a, b: 0, a=1, b=1)
    assert m.parameters == ("a", "b")
    assert m.pos2var == ("a", "b")
    assert m.var2pos["a"] == 0
    assert m.var2pos["b"] == 1


def test_covariance():
    m = Minuit(func0, x=0, y=0)
    assert m.covariance is None
    m.migrad()
    c = m.covariance
    assert_allclose((c["x", "x"], c["y", "y"]), (4, 1), rtol=1e-4)
    assert_allclose((c[0, 0], c[1, 1]), (4, 1), rtol=1e-4)

    expected = [[4.0, 0.0], [0.0, 1.0]]
    assert_allclose(c, expected, atol=1e-4)
    assert isinstance(c, np.ndarray)
    assert c.shape == (2, 2)

    c = c.correlation()
    expected = [[1.0, 0.0], [0.0, 1.0]]
    assert_allclose(c, expected, atol=1e-4)
    assert c["x", "x"] == approx(1.0)


def test_array_func_1():
    m = Minuit(func_np, (2, 1))
    m.errors = (1, 1)
    assert m.parameters == ("x0", "x1")
    assert m.values == (2, 1)
    assert m.errors == (1, 1)
    m.migrad()
    assert_allclose(m.values, (1, 1), rtol=1e-2)
    c = m.covariance
    assert_allclose(np.diag(c), (1, 1), rtol=1e-2)


def test_array_func_2():
    m = Minuit(func_np, (2, 1), grad=func_np_grad, name=("a", "b"))
    m.fixed = (False, True)
    m.errors = (0.5, 0.5)
    m.limits = ((0, 2), (-np.inf, np.inf))
    assert m.values == (2, 1)
    assert m.errors == (0.5, 0.5)
    assert m.fixed == (False, True)
    assert m.limits["a"] == (0, 2)
    m.migrad()
    assert m.fmin.ngrad > 0
    assert_allclose(m.values, (1, 1), rtol=1e-2)
    c = m.covariance
    assert_allclose(c, ((1, 0), (0, 0)), rtol=1e-2)
    m.minos()
    assert len(m.merrors) == 1
    assert m.merrors[0].lower == approx(-1, abs=1e-2)
    assert m.merrors[0].name == "a"


def test_wrong_use_of_array_init():
    m = Minuit(lambda a, b: a**2 + b**2, (1, 2))
    with pytest.raises(TypeError):
        m.migrad()


def test_reset():
    m = Minuit(func0, x=0, y=0)
    m.migrad()
    n = m.nfcn
    m.migrad()
    assert m.nfcn > n
    m.reset()
    m.migrad()
    assert m.nfcn == n

    m = Minuit(func0, grad=func0_grad, x=0, y=0)
    m.migrad()
    n = m.nfcn
    k = m.ngrad
    m.migrad()
    assert m.nfcn > n
    assert m.ngrad > k
    m.reset()
    m.migrad()
    assert m.nfcn == n
    assert m.ngrad == k


def test_typo():
    with pytest.raises(RuntimeError):
        Minuit(lambda x: 0, y=1)

    m = Minuit(lambda x: 0, x=0)
    with pytest.raises(KeyError):
        m.errors["y"] = 1
    with pytest.raises(KeyError):
        m.limits["y"] = (0, 1)


def test_initial_guesses():
    m = Minuit(lambda x: 0, x=0)
    assert m.values["x"] == 0
    assert m.errors["x"] == 0.1
    m = Minuit(lambda x: 0, x=1)
    assert m.values["x"] == 1
    assert m.errors["x"] == 1e-2


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_fixed(grad):
    m = Minuit(func0, grad=grad, x=0, y=0)
    assert m.npar == 2
    assert m.nfit == 2
    m.migrad()
    m.minos()
    assert_allclose(m.values, (2, 5), rtol=2e-3)
    assert_allclose(m.errors, (2, 1), rtol=1e-4)
    assert_allclose(m.covariance, ((4, 0), (0, 1)), atol=1e-4)

    m = Minuit(func0, grad=grad, x=0, y=10)
    assert not m.fixed["y"]
    m.fixed["y"] = True
    assert m.fixed["y"]
    assert m.npar == 2
    assert m.nfit == 1
    m.migrad()
    assert_allclose(m.values, (2, 10), rtol=1e-2)
    assert_allclose(m.fval, func0(2, 10))
    assert m.fixed == [False, True]
    assert_allclose(m.covariance, [[4, 0], [0, 0]], atol=3e-4 if grad is None else 3e-2)

    assert not m.fixed["x"]
    assert m.fixed["y"]
    m.fixed["x"] = True
    m.fixed["y"] = False
    assert m.npar == 2
    assert m.nfit == 1
    m.migrad()
    m.hesse()
    assert_allclose(m.values, (2, 5), rtol=1e-2)
    assert_allclose(m.covariance, [[0, 0], [0, 1]], atol=1e-4)

    with pytest.raises(KeyError):
        m.fixed["a"]

    # fix by setting limits
    m = Minuit(func0, x=0, y=10.0)
    m.limits["y"] = (10, 10)
    assert m.fixed["y"]
    assert m.npar == 2
    assert m.nfit == 1

    # initial value out of range is forced in range
    m = Minuit(func0, x=0, y=20.0)
    m.limits["y"] = (10, 10)
    assert m.fixed["y"]
    assert m.values["y"] == 10
    assert m.npar == 2
    assert m.nfit == 1

    m.fixed = True
    assert m.fixed == [True, True]
    m.fixed[1:] = False
    assert m.fixed == [True, False]
    assert m.fixed[:1] == [True]


def test_fixto():
    m = Minuit(func0, x=0, y=0)
    assert np.all(~m.fixed)
    m.fixto(0, 1)
    assert m.fixed[0]
    assert m.values[0] == 1
    m.fixto([0, 1], 0)
    assert np.all(m.fixed)
    assert m.values == [0, 0]
    m.fixed = False
    assert np.all(~m.fixed)
    m.fixto(slice(0, 2), [1, 2])
    assert np.all(m.fixed)
    assert_equal(m.values, [1, 2])
    m.fixed = False
    assert np.all(~m.fixed)
    m.fixto(..., [2, 3])
    assert np.all(m.fixed)
    assert_equal(m.values, [2, 3])
    with pytest.raises(ValueError, match="length of argument"):
        m.fixto([1], [1, 2])


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_minos(grad):
    m = Minuit(func0, grad=grad, x=0, y=0)
    m.migrad()
    m.minos()
    assert len(m.merrors) == 2
    assert m.merrors["x"].lower == approx(-m.errors["x"], abs=4e-3)
    assert m.merrors["x"].upper == approx(m.errors["x"], abs=4e-3)
    assert m.merrors[1].lower == m.merrors["y"].lower
    assert m.merrors[-1].upper == m.merrors["y"].upper


@pytest.mark.parametrize("cl", (0.68, 0.90, 1, 1.5, 2))
@pytest.mark.parametrize("k", (10, 1000))
@pytest.mark.parametrize("limit", (False, True))
def test_minos_cl(cl, k, limit):
    opt = pytest.importorskip("scipy.optimize")
    stats = pytest.importorskip("scipy.stats")

    def nll(lambd):
        return lambd - k * np.log(lambd)

    # find location of min + up by hand
    def crossing(x):
        return nll(k + x) - (nll(k) + up)

    if cl >= 1:
        bound = cl * k**0.5
        up = 0.5 * cl**2
    else:
        bound = (stats.chi2(1).ppf(cl) * k) ** 0.5
        up = 0.5 * stats.chi2(1).ppf(cl)
    bound *= 1.5
    upper = opt.root_scalar(crossing, bracket=(0, bound)).root
    lower = opt.root_scalar(crossing, bracket=(-bound, 0)).root

    m = Minuit(nll, lambd=k)
    m.limits["lambd"] = (0, None) if limit else None
    m.errordef = Minuit.LIKELIHOOD
    m.migrad()
    assert m.valid
    assert m.accurate
    m.minos(cl=cl)
    assert m.values["lambd"] == approx(k)
    assert m.errors["lambd"] == approx(k**0.5, abs=2e-3 if limit else None)
    assert m.merrors["lambd"].lower == approx(lower, rel=1e-3)
    assert m.merrors["lambd"].upper == approx(upper, rel=1e-3)
    assert m.merrors[0].lower == m.merrors["lambd"].lower
    assert m.merrors[-1].upper == m.merrors["lambd"].upper

    with pytest.raises(KeyError):
        m.merrors["xy"]
    with pytest.raises(KeyError):
        m.merrors["z"]
    with pytest.raises(IndexError):
        m.merrors[1]
    with pytest.raises(IndexError):
        m.merrors[-2]


def test_minos_some_fix():
    m = Minuit(func0, x=0, y=0)
    m.fixed["x"] = True
    m.migrad()
    m.minos()
    assert "x" not in m.merrors
    me = m.merrors["y"]
    assert me.name == "y"
    assert me.lower == approx(-0.83, abs=1e-2)
    assert me.upper == approx(0.83, abs=1e-2)


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_minos_single(grad):
    m = Minuit(func0, grad=func0_grad, x=0, y=0)

    m.strategy = 0
    m.migrad()
    m.minos("x")
    assert len(m.merrors) == 1
    me = m.merrors["x"]
    assert me.name == "x"
    assert me.lower == approx(-2, rel=2e-3)
    assert me.upper == approx(2, rel=2e-3)


def test_minos_single_fixed():
    m = Minuit(func0, x=0, y=0)
    m.fixed["x"] = True
    m.migrad()
    m.minos(1)
    assert len(m.merrors) == 1
    me = m.merrors["y"]
    assert me.name == "y"
    assert me.lower == approx(-0.83, abs=1e-2)


def test_minos_single_fixed_raising():
    m = Minuit(func0, x=0, y=0)
    m.fixed["x"] = True
    m.migrad()
    with pytest.warns(RuntimeWarning):
        m.minos("x")
    assert len(m.merrors) == 0
    assert m.fixed["x"]
    m.minos()
    assert len(m.merrors) == 1
    assert "y" in m.merrors


def test_minos_single_no_migrad():
    m = Minuit(func0, x=0, y=0)
    with pytest.raises(RuntimeError):
        m.minos("x")


def test_minos_single_nonsense_variable():
    m = Minuit(func0, x=0, y=0)
    m.migrad()
    with pytest.raises(ValueError):
        m.minos("nonsense")


def test_minos_with_bad_fmin():
    m = Minuit(lambda x: 0, x=0)
    m.migrad()
    with pytest.raises(RuntimeError):
        m.minos()


def test_minos_bad_index():
    m = Minuit(func0, 1, 1)
    m.migrad()
    with pytest.raises(ValueError):
        m.minos(2)


@pytest.mark.parametrize("grad", (None, func5_grad))
def test_fixing_long_variable_name(grad):
    m = Minuit(
        func5,
        grad=grad,
        long_variable_name_really_long_why_does_it_has_to_be_this_long=2,
        x=0,
        z=0,
    )
    m.fixed["long_variable_name_really_long_why_does_it_has_to_be_this_long"] = True
    m.migrad()
    assert_allclose(m.values, [1, 2, -1], atol=1e-3)


def test_initial_value():
    m = Minuit(func0, x=1.0, y=2.0)
    assert_allclose(m.values[0], 1.0)
    assert_allclose(m.values[1], 2.0)
    assert_allclose(m.values["x"], 1.0)
    assert_allclose(m.values["y"], 2.0)

    m = Minuit(func0, 1.0, 2.0)
    assert_allclose(m.values[0], 1.0)
    assert_allclose(m.values[1], 2.0)
    assert_allclose(m.values["x"], 1.0)
    assert_allclose(m.values["y"], 2.0)

    m = Minuit(func0, (1.0, 2.0))
    assert_allclose(m.values[0], 1.0)
    assert_allclose(m.values[1], 2.0)
    assert_allclose(m.values["x"], 1.0)
    assert_allclose(m.values["y"], 2.0)

    with pytest.raises(RuntimeError):
        Minuit(func0, 1, y=2)

    with pytest.raises(RuntimeError):
        Minuit(func0)


@pytest.mark.parametrize("grad", (None, func0_grad))
@pytest.mark.parametrize("cl", (None, 0.5, 0.9, 1, 1.5, 2))
@pytest.mark.parametrize("experimental", (False, True))
def test_mncontour(grad, cl, experimental):
    stats = pytest.importorskip("scipy.stats")

    m = Minuit(func0, grad=grad, x=1.0, y=2.0)
    m.migrad()
    ctr = m.mncontour("x", "y", size=30, cl=cl, experimental=experimental)

    if cl is None:
        cl = 0.68
    elif cl >= 1:
        cl = stats.chi2(1).cdf(cl**2)
    factor = stats.chi2(2).ppf(cl)
    cl2 = stats.chi2(1).cdf(factor)
    assert len(ctr) == 31
    assert len(ctr[0]) == 2

    m.minos("x", "y", cl=cl2)

    xm = m.merrors["x"]
    ym = m.merrors["y"]
    cmin = np.min(ctr, axis=0)
    cmax = np.max(ctr, axis=0)

    x, y = m.values
    assert_allclose((x + xm.lower, y + ym.lower), cmin, atol=1e-2)
    assert_allclose((x + xm.upper, y + ym.upper), cmax, atol=1e-2)


@pytest.mark.parametrize("experimental", (False, True))
def test_mncontour_limits(experimental):
    pytest.importorskip("scipy.optimize")

    def cost(x, y):
        return x**2 + y**2

    m = Minuit(cost, x=0.5, y=0.5)
    m.limits = (0, 2)
    m.migrad()
    cont = m.mncontour(0, 1, size=30, experimental=experimental)

    assert np.all(cont[:, 0] >= 0)
    assert np.all(cont[:, 1] >= 0)


def test_mncontour_no_fmin():
    m = Minuit(func0, x=0, y=0)

    with pytest.raises(RuntimeError):
        # fails, because this is not a minimum
        m.mncontour("x", "y")

    # succeeds
    m.values = (2, 5)
    # use 0, 1 instead of "x", "y"
    c = m.mncontour(0, 1, size=10)

    # compute reference to compare with
    m2 = Minuit(func0, x=0, y=0)
    m2.migrad()
    c2 = m.mncontour("x", "y", size=10)

    assert_allclose(c, c2)


def test_mncontour_with_fixed_var():
    m = Minuit(func0, x=0, y=0)
    m.fixed["x"] = True
    m.migrad()
    with pytest.raises(ValueError):
        m.mncontour("x", "y")


@pytest.mark.parametrize("experimental", (False, True))
def test_mncontour_array_func(experimental):
    stats = pytest.importorskip("scipy.stats")

    m = Minuit(Correlated(), (0, 0), name=("x", "y"))
    m.migrad()

    cl = stats.chi2(2).cdf(1)
    ctr = m.mncontour("x", "y", size=30, cl=cl, experimental=experimental)
    assert len(ctr) == 31
    assert len(ctr[0]) == 2

    m.minos("x", "y")
    x, y = m.values
    xm = m.merrors["x"]
    ym = m.merrors["y"]
    cmin = np.min(ctr, axis=0)
    cmax = np.max(ctr, axis=0)
    assert_allclose((x + xm.lower, y + ym.lower), cmin, atol=1e-2)
    assert_allclose((x + xm.upper, y + ym.upper), cmax, atol=1e-2)


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_contour(grad):
    m = Minuit(func0, grad=grad, x=1.0, y=2.0)
    m.migrad()
    x, y, v = m.contour("x", "y")
    X, Y = np.meshgrid(x, y)
    assert_allclose(func0(X, Y), v.T)


def test_contour_separate_size():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    x, y, v = m.contour("x", "y", size=(10, 20))
    assert len(x) == 10
    assert len(y) == 20
    X, Y = np.meshgrid(x, y)
    assert_allclose(func0(X, Y), v.T)


def test_contour_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    x, y, v = m.contour("x", "y", grid=(np.linspace(0, 2, 10), np.linspace(0, 4, 20)))
    assert len(x) == 10
    assert len(y) == 20
    X, Y = np.meshgrid(x, y)
    assert_allclose(func0(X, Y), v.T)


def test_contour_bad_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    with pytest.raises(ValueError):
        m.contour("x", "y", grid=([1, 2, 3], [[1, 2, 3]]))

    with pytest.raises(ValueError):
        m.contour("x", "y", grid=([1, 2, 3],))

    with pytest.raises(ValueError):
        m.contour("x", "y", grid=([1, 2, 3], [1, 2], [3, 4]))

    with pytest.raises(ValueError):
        m.contour("x", "y", grid=(10, [1, 2, 3]))


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_profile(grad):
    m = Minuit(func0, grad=grad, x=1.0, y=2.0)
    m.migrad()

    y, v = m.profile("y", subtract_min=False)
    assert_allclose(func0(m.values[0], y), v)

    v2 = m.profile("y", subtract_min=True)[1]
    assert np.min(v2) == 0
    assert_allclose(v - np.min(v), v2)


def test_profile_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    y, v = m.profile("y", grid=np.linspace(0, 4, 15))
    assert len(y) == 15
    assert y[0] == 0
    assert y[-1] == 4
    assert_allclose(func0(m.values[0], y), v)


def test_profile_bad_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    with pytest.raises(ValueError):
        m.profile("y", grid=[[1, 2, 3]])

    with pytest.raises(ValueError):
        m.profile("y", grid=10)


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_mnprofile(grad):
    m = Minuit(func0, grad=grad, x=1.0, y=2.0)
    m.migrad()

    with pytest.raises(ValueError):
        m.mnprofile("foo")

    y, v, _ = m.mnprofile("y", size=10, subtract_min=False)
    m2 = Minuit(func0, grad=grad, x=1.0, y=2.0)
    m2.fixed[1] = True
    v2 = []
    for yi in y:
        m2.values = (m.values[0], yi)
        m2.migrad()
        v2.append(m2.fval)

    assert_allclose(v, v2)

    # use 1 instead of "y"
    y, v3, _ = m.mnprofile(1, size=10, subtract_min=True)
    assert np.min(v3) == 0
    assert_allclose(v - np.min(v), v3)


def test_mnprofile_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    y, v, _ = m.mnprofile("y", grid=np.linspace(0, 4, 15))
    assert len(y) == 15
    assert y[0] == 0
    assert y[-1] == 4
    m2 = Minuit(func0, x=1.0, y=2.0)
    m2.fixed[1] = True
    v2 = []
    for yi in y:
        m2.values = (m.values[0], yi)
        m2.migrad()
        v2.append(m2.fval)
    assert_allclose(v, v2)


def test_mnprofile_bad_grid():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    with pytest.raises(ValueError):
        m.mnprofile("y", grid=10)
    with pytest.raises(ValueError):
        m.mnprofile("y", grid=[[10, 20]])


def test_contour_subtract():
    m = Minuit(func0, x=1.0, y=2.0)
    m.migrad()
    v = m.contour("x", "y", subtract_min=False)[2]
    # use 0 and 1 instead "x", "y"
    v2 = m.contour(0, 1, subtract_min=True)[2]
    assert np.min(v2) == 0
    assert_allclose(v - np.min(v), v2)


def test_profile_array_func():
    m = Minuit(Correlated(), (0, 0), name=("x", "y"))
    m.migrad()
    a = m.profile("y")
    b = m.profile(1)
    assert_equal(a, b)


def test_mnprofile_array_func():
    m = Minuit(Correlated(), (0, 0), name=("x", "y"))
    m.migrad()
    a = m.mnprofile("y")
    b = m.mnprofile(1)
    assert_equal(a, b)


def test_mnprofile_bad_func():
    m = Minuit(lambda x, y: 0, 0, 0)
    with pytest.warns(IMinuitWarning):
        m.mnprofile("x")


def test_fmin_uninitialized(capsys):
    m = Minuit(func0, x=0, y=0)
    assert m.fmin is None
    assert m.fval is None


def test_reverse_limit():
    # issue 94
    def f(x, y, z):
        return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

    with pytest.raises(ValueError):
        m = Minuit(f, x=0, y=0, z=0)
        m.limits["x"] = (3.0, 2.0)


@pytest.fixture
def minuit():
    m = Minuit(func0, x=0, y=0)
    m.migrad()
    m.hesse()
    m.minos()
    return m


def test_fcn():
    m = Minuit(func0, x=0, y=0)
    v = m.fcn([2.0, 5.0])
    assert v == func0(2.0, 5.0)


def test_grad():
    m = Minuit(func0, grad=func0_grad, x=0, y=0)
    v = m.fcn([2.0, 5.0])
    g = m.grad([2.0, 5.0])
    assert v == func0(2.0, 5.0)
    assert_equal(g, func0_grad(2.0, 5.0))


def test_values(minuit):
    expected = [2.0, 5.0]
    assert len(minuit.values) == 2
    assert_allclose(minuit.values, expected, atol=4e-3)
    minuit.values = expected
    assert minuit.values == expected
    assert minuit.values[-1] == 5
    assert minuit.values[0] == 2
    assert minuit.values[1] == 5
    assert minuit.values["x"] == 2
    assert minuit.values["y"] == 5
    assert minuit.values[:1] == [2]
    minuit.values[1:] = [3]
    assert minuit.values[:] == [2, 3]
    assert minuit.values[-1] == 3
    minuit.values = 7
    assert minuit.values[:] == [7, 7]
    with pytest.raises(KeyError):
        minuit.values["z"]
    with pytest.raises(IndexError):
        minuit.values[3]
    with pytest.raises(IndexError):
        minuit.values[-10] = 1
    with pytest.raises(ValueError):
        minuit.values[:] = [2]


def test_fmin():
    m = Minuit(lambda x, s: (x * s) ** 2, x=1, s=1)
    m.fixed["s"] = True
    m.migrad()
    fm1 = m.fmin
    assert fm1.is_valid

    m.values["s"] = 0

    m.migrad()
    fm2 = m.fmin

    assert fm1.is_valid
    assert not fm2.is_valid


def test_chi2_fit():
    def chi2(x, y):
        return (x - 1) ** 2 + ((y - 2) / 3) ** 2

    m = Minuit(chi2, x=0, y=0)
    m.migrad()
    assert_allclose(m.values, (1, 2))
    assert_allclose(m.errors, (1, 3))


def test_likelihood():
    # normal distributed
    # fmt: off
    z = np.array([-0.44712856, 1.2245077 , 0.40349164, 0.59357852, -1.09491185,
                  0.16938243, 0.74055645, -0.9537006 , -0.26621851, 0.03261455,
                  -1.37311732, 0.31515939, 0.84616065, -0.85951594, 0.35054598,
                  -1.31228341, -0.03869551, -1.61577235, 1.12141771, 0.40890054,
                  -0.02461696, -0.77516162, 1.27375593, 1.96710175, -1.85798186,
                  1.23616403, 1.62765075, 0.3380117 , -1.19926803, 0.86334532,
                  -0.1809203 , -0.60392063, -1.23005814, 0.5505375 , 0.79280687,
                  -0.62353073, 0.52057634, -1.14434139, 0.80186103, 0.0465673 ,
                  -0.18656977, -0.10174587, 0.86888616, 0.75041164, 0.52946532,
                  0.13770121, 0.07782113, 0.61838026, 0.23249456, 0.68255141,
                  -0.31011677, -2.43483776, 1.0388246 , 2.18697965, 0.44136444,
                  -0.10015523, -0.13644474, -0.11905419, 0.01740941, -1.12201873,
                  -0.51709446, -0.99702683, 0.24879916, -0.29664115, 0.49521132,
                  -0.17470316, 0.98633519, 0.2135339 , 2.19069973, -1.89636092,
                  -0.64691669, 0.90148689, 2.52832571, -0.24863478, 0.04366899,
                  -0.22631424, 1.33145711, -0.28730786, 0.68006984, -0.3198016 ,
                  -1.27255876, 0.31354772, 0.50318481, 1.29322588, -0.11044703,
                  -0.61736206, 0.5627611 , 0.24073709, 0.28066508, -0.0731127 ,
                  1.16033857, 0.36949272, 1.90465871, 1.1110567 , 0.6590498 ,
                 -1.62743834, 0.60231928, 0.4202822 , 0.81095167, 1.04444209])
    # fmt: on

    data = 2 * z + 1

    def nll(mu, sigma):
        z = (data - mu) / sigma
        logp = -0.5 * z**2 - np.log(sigma)
        return -np.sum(logp)

    m = Minuit(nll, mu=0, sigma=1)
    m.errordef = Minuit.LIKELIHOOD
    m.limits["sigma"] = (0, None)
    m.migrad()

    mu = np.mean(data)
    sigma = np.std(data)
    assert_allclose(m.values, (mu, sigma), rtol=5e-3)
    s_mu = sigma / len(data) ** 0.5
    assert_allclose(m.errors, (s_mu, 0.12047), rtol=1e-1)


def test_oneside():
    # Solution: x=2., y=5.
    m = Minuit(func0, x=0, y=0)
    m.limits["x"] = (None, 9)
    m.migrad()
    assert_allclose(m.values, (2, 5), atol=2e-2)
    m.values["x"] = 0
    m.limits["x"] = (None, 1)
    m.migrad()
    assert_allclose(m.values, (1, 5), atol=1e-3)
    m.values = (5, 0)
    m.limits["x"] = (3, None)
    m.migrad()
    assert_allclose(m.values, (3, 5), atol=4e-3)


def test_oneside_outside():
    m = Minuit(func0, x=5, y=0)
    m.limits["x"] = (None, 1)
    assert m.values["x"] == 1
    m.limits["x"] = (2, None)
    assert m.values["x"] == 2


def test_migrad_ncall():
    class Func:
        nfcn = 0

        def __call__(self, x):
            self.nfcn += 1
            return np.exp(x**2)

    # check that counting is accurate
    fcn = Func()
    m = Minuit(fcn, x=3)
    m.migrad()
    assert m.nfcn == fcn.nfcn
    fcn.nfcn = 0
    m.reset()
    m.migrad()
    assert m.nfcn == fcn.nfcn

    ncalls_without_limit = m.nfcn
    # check that ncall argument limits function calls in migrad
    # note1: Minuit only checks the ncall counter in units of one iteration
    # step, therefore the call counter is in general not equal to ncall.
    # note2: If you pass ncall=0, Minuit uses a heuristic value that depends
    # on the number of parameters.
    m.reset()
    m.migrad(ncall=1)
    assert m.nfcn < ncalls_without_limit


@pytest.mark.parametrize("arg", (1, np.array([1.0, 2.0])))
def test_ngrad(arg):
    class Func:
        ngrad = 0

        def __call__(self, x):
            return np.sum(x**2)

        def grad(self, x):
            self.ngrad += 1
            if np.ndim(x) == 1:
                return 2 * x
            return [2 * x]

    # check that counting is accurate
    fcn = Func()
    m = Minuit(fcn, arg)
    m.migrad()
    assert m.ngrad > 0
    assert m.ngrad == fcn.ngrad
    fcn.ngrad = 0
    m.reset()
    m.migrad()
    assert m.ngrad == fcn.ngrad

    # HESSE ignores analytical gradient
    before = m.ngrad
    m.hesse()
    assert m.ngrad == before

    m.reset()
    m.migrad()
    m2 = Minuit(lambda x: fcn(x), arg)
    m2.migrad()
    assert m.ngrad > 0
    assert m2.ngrad == 0
    # apparently this is not always the case:
    # assert m2.nfcn > m.nfcn


def test_errordef():
    m = Minuit(lambda x: x**2, 0)
    m.errordef = 4
    assert m.errordef == 4
    m.migrad()
    m.hesse()
    assert_allclose(m.errors["x"], 2)
    m.errordef = 1
    m.hesse()
    assert_allclose(m.errors["x"], 1)
    with pytest.raises(ValueError):
        m.errordef = 0


def test_print_level():
    from iminuit._core import MnPrint

    m = Minuit(lambda x: 0, x=0)
    m.print_level = 0
    assert m.print_level == 0
    assert MnPrint.global_level == 0
    m.print_level = 1
    assert MnPrint.global_level == 1
    MnPrint.global_level = 0


def test_params():
    m = Minuit(func0, x=1, y=2)
    m.errors = (3, 4)
    m.fixed["x"] = True
    m.limits["y"] = (None, 10)

    # these are the initial param states
    expected = (
        Param(0, "x", 1.0, 3.0, None, False, True, None, None),
        Param(1, "y", 2.0, 4.0, None, False, False, None, 10),
    )
    assert m.params == expected

    m.migrad()
    m.minos()
    assert m.init_params == expected

    expected = [
        Namespace(number=0, name="x", value=1.0, error=3.0, merror=(-3.0, 3.0)),
        Namespace(number=1, name="y", value=5.0, error=1.0, merror=(-1.0, 1.0)),
    ]

    params = m.params
    for i, exp in enumerate(expected):
        p = params[i]
        assert p.number == exp.number
        assert p.name == exp.name
        assert p.value == approx(exp.value, rel=1e-2)
        assert p.error == approx(exp.error, rel=1e-2)
        assert p.error == approx(exp.error, rel=1e-2)


def test_non_analytical_function():
    class Func:
        i = 0

        def __call__(self, a):
            self.i += 1
            return self.i % 3

    m = Minuit(Func(), 0)
    m.migrad()
    assert not m.fmin.is_valid
    assert m.fmin.is_above_max_edm


def test_non_invertible():
    m = Minuit(lambda x, y: 0, 1, 2)
    m.strategy = 0
    m.migrad()
    assert m.fmin.is_valid
    m.hesse()
    assert not m.fmin.is_valid
    assert m.covariance is None


def test_function_without_local_minimum():
    m = Minuit(lambda a: -a, 0)
    m.migrad()
    assert not m.fmin.is_valid
    assert m.fmin.is_above_max_edm


def test_function_with_maximum():
    def func(a):
        return -(a**2)

    m = Minuit(func, a=0)
    m.migrad()
    assert not m.fmin.is_valid


def test_perfect_correlation():
    def func(a, b):
        return (a - b) ** 2

    m = Minuit(func, a=1, b=2)
    m.migrad()
    assert m.fmin.is_valid
    assert not m.fmin.has_accurate_covar
    assert not m.fmin.has_posdef_covar
    assert m.fmin.has_made_posdef_covar


def test_modify_param_state():
    m = Minuit(func0, x=1, y=2)
    m.errors["y"] = 1
    m.fixed["y"] = True
    m.migrad()
    assert_allclose(m.values, [2, 2], atol=1e-4)
    assert_allclose(m.errors, [2, 1], atol=1e-4)
    m.fixed["y"] = False
    m.values["x"] = 1
    m.errors["x"] = 1
    assert_allclose(m.values, [1, 2], atol=1e-4)
    assert_allclose(m.errors, [1, 1], atol=1e-4)
    m.migrad()
    assert_allclose(m.values, [2, 5], atol=1e-3)
    assert_allclose(m.errors, [2, 1], atol=1e-3)
    m.values["y"] = 6
    m.hesse()
    assert_allclose(m.values, [2, 6], atol=1e-3)
    assert_allclose(m.errors, [2, 0.35], atol=1e-3)


def test_view_lifetime():
    m = Minuit(func0, x=1, y=2)
    val = m.values
    del m
    val["x"] = 3  # should not segfault
    assert val["x"] == 3


def test_hesse_without_migrad():
    m = Minuit(lambda x: x**2 + x**4, x=0)
    m.errordef = 0.5
    # second derivative: 12 x^2 + 2
    m.hesse()
    assert m.errors["x"] == approx(0.5**0.5, abs=1e-4)
    m.values["x"] = 1
    m.hesse()
    assert m.errors["x"] == approx((1.0 / 14.0) ** 0.5, abs=1e-4)
    assert m.fmin

    m = Minuit(lambda x: 0, 0)
    m.hesse()
    assert not m.accurate
    assert m.fmin.hesse_failed


def test_edm_goal():
    m = Minuit(func0, x=0, y=0)
    m.migrad()
    assert m.fmin.edm_goal == approx(0.0002)
    m.hesse()
    assert m.fmin.edm_goal == approx(0.0002)


def throwing(x):
    raise RuntimeError("user message")


def divide_by_zero(x):
    return 1 / 0


def returning_nan(x):
    return np.nan


def returning_garbage(x):
    return "foo"


@pytest.mark.parametrize(
    "func,expected",
    [
        (throwing, RuntimeError("user message")),
        (divide_by_zero, ZeroDivisionError("division by zero")),
        (returning_nan, RuntimeError("result is NaN")),
        (returning_garbage, RuntimeError("Unable to cast Python instance")),
    ],
)
def test_bad_functions(func, expected):
    m = Minuit(func, x=1)
    m.throw_nan = True
    with pytest.raises(type(expected)) as excinfo:
        m.migrad()
    assert str(expected) in str(excinfo.value)


def test_throw_nan():
    m = Minuit(returning_nan, x=1)
    assert not m.throw_nan
    m.migrad()
    m.throw_nan = True
    with pytest.raises(RuntimeError):
        m.migrad()
    assert m.throw_nan


def returning_nan_array(x):
    return np.array([1, np.nan])


def returning_garbage_array(x):
    return np.array([1, "foo"])


def returning_noniterable(x):
    return 0


@pytest.mark.parametrize(
    "func,expected",
    [
        (throwing, RuntimeError("user message")),
        (divide_by_zero, ZeroDivisionError("division by zero")),
        (returning_nan_array, RuntimeError("result is NaN")),
        (returning_garbage_array, RuntimeError("Unable to cast Python instance")),
        (returning_noniterable, RuntimeError()),
    ],
)
def test_bad_functions_np(func, expected):
    m = Minuit(lambda x: np.dot(x, x), (1, 1), grad=func)
    m.throw_nan = True
    with pytest.raises(type(expected)) as excinfo:
        m.migrad()
    assert str(expected) in str(excinfo.value)


@pytest.mark.parametrize("sign", (-1, 1))
def test_parameter_at_limit(sign):
    m = Minuit(lambda x: (x - sign * 1.2) ** 2, x=0)
    m.limits["x"] = (-1, 1)
    m.migrad()
    assert m.values["x"] == approx(sign * 1.0, abs=1e-3)
    assert m.fmin.has_parameters_at_limit

    m = Minuit(lambda x: (x - sign * 1.2) ** 2, x=0)
    m.migrad()
    assert m.values["x"] == approx(sign * 1.2, abs=1e-3)
    assert not m.fmin.has_parameters_at_limit


@pytest.mark.parametrize("iterate,valid", ((1, False), (5, True)))
def test_inaccurate_fcn(iterate, valid):
    def f(x):
        return abs(x) ** 10 + 1e6

    m = Minuit(f, x=2)
    m.migrad(iterate=iterate)
    assert m.valid == valid


def test_migrad_iterate():
    m = Minuit(lambda x: 0, x=2)
    with pytest.raises(ValueError):
        m.migrad(iterate=0)


def test_precision():
    def fcn(x):
        return np.exp(x * x + 1)

    m = Minuit(fcn, x=-1)
    assert m.precision is None

    m.precision = 0.1
    assert m.precision == 0.1
    m.migrad()
    fm1 = m.fmin
    m.reset()
    m.precision = 1e-9
    m.migrad()
    fm2 = m.fmin
    assert fm2.edm < fm1.edm

    with pytest.raises(ValueError):
        m.precision = -1.0

    fcn.precision = 0.1
    fm3 = Minuit(fcn, x=-1).migrad().fmin
    assert fm3.edm == fm1.edm


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_scan(grad):
    m = Minuit(func0, x=0, y=0, grad=grad)
    m.errors[0] = 10
    m.limits[1] = (-10, 10)
    m.scan(ncall=99)
    assert m.fmin.nfcn == approx(99, rel=0.2)
    if grad is None:
        assert m.valid
    assert_allclose(m.values, (2, 5), atol=0.6)


def test_scan_with_fixed_par():
    m = Minuit(func0, x=3, y=0)
    m.fixed["x"] = True
    m.limits[1] = (-10, 10)
    m.scan()
    assert m.valid
    assert_allclose(m.values, (3, 5), atol=0.1)
    assert m.errors[1] == approx(1, abs=8e-3)

    m = Minuit(func0, x=5, y=4)
    m.fixed["y"] = True
    m.limits[0] = (0, 10)
    m.scan()
    assert m.valid
    assert_allclose(m.values, (2, 4), atol=0.1)
    assert m.errors[0] == approx(2, abs=1e-1)


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_simplex(grad):
    m = Minuit(func0, x=0, y=0, grad=grad)
    m.tol = 2e-4  # must decrease tolerance to get same accuracy as Migrad
    m.simplex()
    assert m.valid
    assert_allclose(m.values, (2, 5), atol=5e-3)

    m2 = Minuit(func0, x=0, y=0, grad=grad)
    m2.precision = 0.001
    m2.simplex()
    assert m2.fval != m.fval

    m3 = Minuit(func0, x=0, y=0, grad=grad)
    m3.simplex(ncall=10)
    assert 10 <= m3.fmin.nfcn < 15
    assert m3.fval > m.fval


def test_simplex_with_fixed_par_and_limits():
    m = Minuit(func0, x=3, y=0)
    m.tol = 2e-4  # must decrease tolerance to get same accuracy as Migrad
    m.fixed["x"] = True
    m.limits[1] = (-10, 10)
    m.simplex()
    assert m.valid
    assert_allclose(m.values, (3, 5), atol=2e-3)

    m = Minuit(func0, x=5, y=4)
    m.tol = 2e-4  # must decrease tolerance to get same accuracy as Migrad
    m.fixed["y"] = True
    m.limits[0] = (0, 10)
    m.simplex()
    assert m.valid
    assert_allclose(m.values, (2, 4), atol=3e-3)


def test_tolerance():
    m = Minuit(func0, x=0, y=0)
    assert m.tol == 0.1
    m.migrad()
    assert m.valid
    edm = m.fmin.edm
    m.tol = 0
    m.reset()
    m.migrad()
    assert m.fmin.edm < edm
    m.reset()
    m.tol = None
    assert m.tol == 0.1
    m.reset()
    m.migrad()
    assert m.fmin.edm == edm


def test_bad_tolerance():
    m = Minuit(func0, x=0, y=0)

    with pytest.raises(ValueError):
        m.tol = -1


def test_cfunc():
    nb = pytest.importorskip("numba")

    c_sig = nb.types.double(nb.types.uintc, nb.types.CPointer(nb.types.double))

    @nb.cfunc(c_sig)
    def fcn(n, x):
        x = nb.carray(x, (n,))
        r = 0.0
        for i in range(n):
            r += (x[i] - i) ** 2
        return r

    m = Minuit(fcn, (1, 2, 3))
    m.migrad()
    assert_allclose(m.values, (0, 1, 2), atol=1e-8)


@pytest.mark.parametrize("cl", (0.5, None, 0.9))
@pytest.mark.parametrize("experimental", (False, True))
def test_confidence_level(cl, experimental):
    stats = pytest.importorskip("scipy.stats")
    mpath = pytest.importorskip("matplotlib.path")

    cov = ((1.0, 0.5), (0.5, 4.0))
    truth = (1.0, 2.0)
    d = stats.multivariate_normal(truth, cov)

    def nll(par):
        return -np.log(d.pdf(par))

    nll.errordef = 0.5

    cl_ref = 0.68 if cl is None else cl

    m = Minuit(nll, (0.0, 0.0))
    m.migrad()

    n = 10000
    r = d.rvs(n, random_state=1)

    # check that mncontour indeed contains fraction of random points equal to CL
    pts = m.mncontour("x0", "x1", cl=cl, experimental=experimental)
    p = mpath.Path(pts)
    cl2 = np.sum(p.contains_points(r)) / n
    assert cl2 == approx(cl_ref, abs=0.01)

    # check that minos interval  indeed contains fraction of random points equal to CL
    m.minos(cl=cl)
    for ipar, (v, me) in enumerate(zip(m.values, m.merrors.values())):
        a = v + me.lower
        b = v + me.upper
        cl2 = np.sum((a < r[:, ipar]) & (r[:, ipar] < b)) / n
        assert cl2 == approx(cl_ref, abs=0.01)


def test_repr():
    m = Minuit(func0, 0, 0)
    assert repr(m) == f"{m.params!r}"

    m.migrad()
    assert repr(m) == f"{m.fmin!r}\n{m.params!r}\n{m.covariance!r}"

    m.minos()
    assert repr(m) == f"{m.fmin!r}\n{m.params!r}\n{m.merrors!r}\n{m.covariance!r}"


@pytest.mark.parametrize("grad", (None, func0_grad))
def test_pickle(grad):
    import pickle

    m = Minuit(func0, x=1, y=1, grad=grad)
    m.fixed[1] = True
    m.limits[0] = 0, 10
    m.migrad()

    pkl = pickle.dumps(m)
    m2 = pickle.loads(pkl)

    assert id(m2) != id(m)
    # check correct linking of views
    assert id(m2.values._minuit) == id(m2)
    assert id(m2.errors._minuit) == id(m2)
    assert id(m2.limits._minuit) == id(m2)
    assert id(m2.fixed._minuit) == id(m2)

    assert m2.init_params == m.init_params
    assert m2.params == m.params
    assert m2.fmin == m.fmin
    assert_equal(m2.covariance, m.covariance)

    m.fixed = False
    m2.fixed = False
    m.migrad()
    m.minos()

    m2.migrad()
    m2.minos()

    assert m2.merrors == m.merrors

    assert m2.fmin.fval == m.fmin.fval
    assert m2.fmin.edm == m.fmin.edm
    assert m2.fmin.nfcn == m.fmin.nfcn
    assert m2.fmin.ngrad == m.fmin.ngrad


def test_minos_new_min():
    xref = [1.0]
    m = Minuit(lambda x: (x - xref[0]) ** 2, x=0)
    m.migrad()
    assert m.values[0] == approx(xref[0], abs=1e-3)
    m.minos()
    assert m.merrors["x"].lower == approx(-1, abs=1e-2)
    assert m.merrors["x"].upper == approx(1, abs=1e-2)
    xref[0] = 1.1
    m.minos()
    # values are not updated...
    assert m.values[0] == approx(1.0, abs=1e-3)  # should be 1.1
    # ...but interval is correct
    assert m.merrors["x"].lower == approx(-0.9, abs=1e-2)
    assert m.merrors["x"].upper == approx(1.1, abs=1e-2)


def test_minos_without_migrad():
    m = Minuit(lambda x, y: (x - 1) ** 2 + (y / 2) ** 2, 1.001, 0.001)
    m.minos()
    me = m.merrors["x"]
    assert me.is_valid
    assert me.lower == approx(-1, abs=5e-3)
    assert me.upper == approx(1, abs=5e-3)
    me = m.merrors["y"]
    assert me.is_valid
    assert me.lower == approx(-2, abs=5e-3)
    assert me.upper == approx(2, abs=5e-3)


def test_missing_ndata():
    m = Minuit(lambda a: a, 1)
    assert_equal(m.ndof, np.nan)


def test_call_limit_reached_in_hesse():
    m = Minuit(lambda x: ((x - 1.2) ** 4).sum(), np.ones(10) * 10)
    m.migrad(ncall=200)
    assert m.fmin.has_reached_call_limit
    assert m.fmin.nfcn < 205


def test_bad_cl():
    m = Minuit(func0, 1, 1)
    m.migrad()

    for cl in (0, -1):
        with pytest.raises(ValueError):
            m.minos(cl=cl)

        with pytest.raises(ValueError):
            m.mncontour("x", "y", cl=cl)


def test_negative_errors():
    m = Minuit(func0, -1, -1)
    assert np.all(np.array(m.errors) > 0)
    with pytest.warns():
        m.errors[0] = -1
    assert m.errors[0] > 0
    with pytest.warns():
        m.errors = -2
    assert np.all(np.array(m.errors) > 0)
    m.errors = 10
    assert_allclose(m.errors, 10)
    m.errors = (1, 2)
    assert_allclose(m.errors, (1, 2))


def test_visualize():
    m = Minuit(func0, 1, 1)
    m.migrad()
    with pytest.raises(AttributeError):
        m.visualize()

    kwargs = {}

    func0.visualize = lambda args, **kw: kwargs.update(kw)
    m.visualize(foo="bar")

    assert kwargs == {"foo": "bar"}

    del func0.visualize


def test_annotated_cost_function():
    def cost(a, b: Annotated[float, 0.1:1]):
        return a**2 + b**2

    m = Minuit(cost, 0.5, 0.5)
    assert m.limits[0] == (-np.inf, np.inf)
    assert m.limits[1] == (0.1, 1.0)
    m.migrad()
    assert_allclose(m.values, (0, 0.1), atol=1e-2)

    m2 = Minuit(cost, 0.5, 0.5, name=("x", "y"))
    assert m2.limits["x"] == (-np.inf, np.inf)
    assert m2.limits["y"] == (0.1, 1.0)
    m.migrad()
    assert_allclose(m.values, (0, 0.1), atol=1e-2)


def test_enforced_grad():
    def cost(a, b):
        return a**2 + b**2

    with pytest.raises(ValueError):
        Minuit(cost, 0, 0, grad=True)


def test_bad_grad():
    def cost(a, b):
        return a**2 + b**2

    with pytest.raises(ValueError, match="provided gradient is not a CostGradient"):
        Minuit(cost, 0, 0, grad="foo")


def test_errordef_already_set_warning():
    def cost(a, b):
        return a**2 + b**2

    cost.errordef = 1

    m = Minuit(cost, 0, 0)
    m.hesse()
    assert_allclose(m.errors, [1, 1])

    with pytest.warns(ErrordefAlreadySetWarning):
        m.errordef = 4

    # check that cost.errordef value is still overridden
    m.hesse()
    assert_allclose(m.errors, [2, 2])


def test_mnprofile_bad_cost():
    def fn(a, b):
        if b > 0:
            return a**2
        return (a - 0.1) ** 2

    m = Minuit(fn, 1, 2)
    # test iterative fitting with custom precision
    # m.precision = 1e-18
    m.migrad()
    with pytest.warns(IMinuitWarning, match="MIGRAD fails to converge"):
        m.mnprofile("a")


def test_migrad_iterative_with_precision():
    def fn(a, b):
        return 0

    m1 = Minuit(fn, 1, 2)
    m1.precision = 1e-7
    m1.migrad(iterate=5)

    m2 = Minuit(fn, 1, 2)
    m2.precision = 1e-7
    m2.migrad(iterate=1)

    assert m2.fmin.nfcn < m1.fmin.nfcn