[go: up one dir, main page]

File: test_issue.py

package info (click to toggle)
iminuit 2.30.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,660 kB
  • sloc: cpp: 14,591; python: 11,177; makefile: 11; sh: 5
file content (194 lines) | stat: -rw-r--r-- 4,478 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import warnings


def test_issue_424():
    from iminuit import Minuit

    def fcn(x, y, z):
        return (x - 1) ** 2 + (y - 4) ** 2 / 2 + (z - 9) ** 2 / 3

    m = Minuit(fcn, x=0.0, y=0.0, z=0.0)
    m.migrad()

    m.fixed["x"] = True
    m.errors["x"] = 2
    m.hesse()  # this used to release x
    assert m.fixed["x"]
    assert m.errors["x"] == 2


def test_issue_544():
    import pytest
    from iminuit import Minuit
    from iminuit.util import IMinuitWarning

    def fcn(x, y):
        return x**2 + y**2

    m = Minuit(fcn, x=0, y=0)
    m.fixed = True
    with pytest.warns(IMinuitWarning):
        m.hesse()  # this used to cause a segfault


def test_issue_648():
    from iminuit import Minuit

    class F:
        first = True

        def __call__(self, a, b):
            if self.first:
                assert a == 1.0 and b == 2.0
                self.first = False
            return a**2 + b**2

    m = Minuit(F(), a=1, b=2)
    m.fixed["a"] = False  # this used to change a to b
    m.migrad()


def test_issue_643():
    from iminuit import Minuit

    def fcn(x, y, z):
        return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

    m = Minuit(fcn, x=2, y=3, z=4)
    m.migrad()

    m2 = Minuit(fcn, x=m.values["x"], y=m.values["y"], z=m.values["z"])
    # used to call MnHesse when it was not needed and quickly exhaust call limit
    for i in range(10):
        m2.minos()

    m2.reset()
    # used to exhaust call limit, because calls to MnHesse did not reset call count
    for i in range(10):
        m2.values = m.values
        m2.minos()


def test_issue_669():
    from iminuit import Minuit

    def fcn(x, y):
        return x**2 + (y / 2) ** 2

    m = Minuit(fcn, x=0, y=0)

    m.migrad()

    xy1 = m.mncontour(x="x", y="y", size=10)
    xy2 = m.mncontour(x="y", y="x", size=10)  # used to fail

    # needs better way to compare polygons
    for x, y in xy1:
        match = False
        for y2, x2 in xy2:
            if abs(x - x2) < 1e-3 and abs(y - y2) < 1e-3:
                match = True
                break
        assert match


# cannot define this inside function, pickle will not allow it
def fcn(par):
    return np.sum(par**2)


# cannot define this inside function, pickle will not allow it
def grad(par):
    return 2 * par


def test_issue_687():
    import pickle
    import numpy as np
    from iminuit import Minuit

    start = np.zeros(3)
    m = Minuit(fcn, start)

    m.migrad()
    s_m = str(m)

    s = pickle.dumps(m)
    m2 = pickle.loads(s)

    s_m2 = str(m2)  # this used to fail
    assert s_m == s_m2


def test_issue_694():
    import pytest
    import numpy as np
    from iminuit import Minuit
    from iminuit.cost import ExtendedUnbinnedNLL

    stats = pytest.importorskip("scipy.stats")

    xmus = 1.0
    xmub = 5.0
    xsigma = 1.0
    ymu = 0.5
    ysigma = 0.2
    ytau = 0.1

    for seed in range(100):
        rng = np.random.default_rng(seed)

        xs = rng.normal(xmus, xsigma, size=33)
        xb = rng.normal(xmub, xsigma, size=66)
        x = np.append(xs, xb)

        def model(x, sig_n, sig_mu, sig_sigma, bkg_n, bkg_tau):
            return sig_n + bkg_n, (
                sig_n * stats.norm.pdf(x, sig_mu, sig_sigma)
                + bkg_n * stats.expon.pdf(x, 0, bkg_tau)
            )

        nll = ExtendedUnbinnedNLL(x, model)

        m = Minuit(nll, sig_n=33, sig_mu=ymu, sig_sigma=ysigma, bkg_n=66, bkg_tau=ytau)
        # with Simplex the fit never yields NaN, which is good but not what we want here
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            m.migrad(use_simplex=False)

        if np.isnan(m.fmin.edm):
            assert not m.valid
            assert m.fmin.is_above_max_edm
            break
    else:
        assert False


def test_issue_923():
    from iminuit import Minuit
    from iminuit.cost import LeastSquares
    import numpy as np
    import pytest

    # implicitly needed by visualize
    pytest.importorskip("matplotlib")

    def model(x, c1):
        c2 = 100
        res = np.zeros(len(x))
        mask = x < 47
        res[mask] = c1
        res[~mask] = c2
        return res

    xtest = np.linspace(0, 74)
    ytest = xtest * 0 + 1
    ytesterr = ytest

    least_squares = LeastSquares(xtest, ytest, ytesterr, model)

    m = Minuit(least_squares, c1=1)
    m.migrad()
    # this used to trigger an endless (?) loop
    m.visualize()