[go: up one dir, main page]

File: test_draw.py

package info (click to toggle)
iminuit 2.30.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,660 kB
  • sloc: cpp: 14,591; python: 11,177; makefile: 11; sh: 5
file content (258 lines) | stat: -rw-r--r-- 6,368 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import pytest
from iminuit import Minuit
from pathlib import Path
import numpy as np
from numpy.testing import assert_allclose
import contextlib

mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")

mpl.use("Agg")


def f1(x, y):
    return (1 - x) ** 2 + np.exp((y - 1) ** 2)


@pytest.fixture
def minuit():
    m = Minuit(f1, x=0, y=0)
    m.migrad()
    return m


@pytest.fixture
def fig(request):
    fig = plt.figure()
    yield fig
    p = Path(__file__).parent / "fig"
    if not p.exists():
        p.mkdir()
    fig.savefig(p / (request.node.name + ".svg"))
    plt.close()


@pytest.mark.parametrize("arg", ("x", 1))
def test_profile_1(fig, minuit, arg):
    minuit.draw_profile(arg)
    plt.ylim(0, 5)


def test_profile_2(fig, minuit):
    minuit.draw_profile("x", grid=np.linspace(0, 5))


@pytest.mark.parametrize("arg", ("x", 1))
def test_mnprofile_1(fig, minuit, arg):
    # plots with hesse errors
    minuit.draw_mnprofile(arg)
    plt.ylim(0, 5)


def test_mnprofile_2(fig, minuit):
    minuit.minos()
    minuit.draw_mnprofile("x", grid=np.linspace(0, 5))


def test_mncontour_1(fig, minuit):
    minuit.draw_mncontour("x", "y")


def test_mncontour_2(fig, minuit):
    # use 0, 1 instead of "x", "y"
    minuit.draw_mncontour(0, 1, cl=0.68)


def test_mncontour_3(fig, minuit):
    minuit.draw_mncontour("x", "y", cl=[0.68, 0.9])


def test_mncontour_4(fig, minuit):
    minuit.draw_mncontour("x", "y", size=20, interpolated=200)


def test_mncontour_5(fig, minuit):
    minuit.draw_mncontour("x", "y", size=20, interpolated=10)


def test_contour_1(fig, minuit):
    minuit.draw_contour("x", "y")


def test_contour_2(fig, minuit):
    # use 0, 1 instead of "x", "y"
    minuit.draw_contour(0, 1, size=20, bound=2)


def test_contour_3(fig, minuit):
    minuit.draw_contour("x", "y", size=100, bound=((-0.5, 2.5), (-1, 3)))


def test_contour_4(fig, minuit):
    minuit.draw_contour("x", "y", size=(10, 50), bound=((-0.5, 2.5), (-1, 3)))


def test_contour_5(fig, minuit):
    minuit.draw_contour("x", "y", grid=(np.linspace(-0.5, 2.5), np.linspace(-1, 3)))


def test_mnmatrix_1(fig, minuit):
    minuit.draw_mnmatrix()


def test_mnmatrix_2(fig, minuit):
    minuit.draw_mnmatrix(cl=[0.68, 0.9])


def test_mnmatrix_3(fig):
    m = Minuit(lambda x: x**2, x=0)
    m.migrad()
    m.draw_mnmatrix()


def test_mnmatrix_4(fig, minuit):
    with pytest.raises(ValueError):
        minuit.draw_mnmatrix(cl=[])


def test_mnmatrix_5():
    m = Minuit(lambda x: x**2, x=10)
    with pytest.raises(RuntimeError, match="minimum is not valid"):
        m.draw_mnmatrix()


def test_mnmatrix_6(fig, minuit):
    minuit.fixed = True
    with pytest.raises(RuntimeError, match="all parameters are fixed"):
        minuit.draw_mnmatrix()


def test_mnmatrix_7(fig):
    # provoke an mnprofile iteration on asymmetric profile
    m = Minuit(lambda x: abs(x) ** 2 + x**4 + 10 * x, x=0)
    m.migrad()
    m.draw_mnmatrix(cl=[1, 3])


@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_interactive():
    ipywidgets = pytest.importorskip("ipywidgets")

    def cost(a, b):
        return a**2 + b**2

    class Plot:
        def __init__(self):
            self.called = False
            self.raises = False

        def __call__(self, args):
            self.called = True
            if self.raises:
                raise ValueError("foo")

        @contextlib.contextmanager
        def assert_call(self):
            self.called = False
            yield
            assert self.called

    plot = Plot()

    m = Minuit(cost, 1, 1)
    with pytest.raises(AttributeError, match="no visualize method"):
        m.interactive(raise_on_exception=True)

    with plot.assert_call():
        out1 = m.interactive(plot)
    assert isinstance(out1, ipywidgets.HBox)

    # manipulate state to also check this code
    ui = out1.children[1]
    header, parameters = ui.children
    fit_button, update_button, reset_button, algo_select = header.children
    with plot.assert_call():
        fit_button.click()
    assert_allclose(m.values, (0, 0), atol=1e-5)
    with plot.assert_call():
        reset_button.click()
    assert_allclose(m.values, (1, 1), atol=1e-5)

    algo_select.value = "Scipy"
    with plot.assert_call():
        fit_button.click()

    algo_select.value = "Simplex"
    with plot.assert_call():
        fit_button.click()

    update_button.value = False
    with plot.assert_call():
        # because of implementation details, we have to trigger the slider several times
        for i in range(5):
            parameters.children[0].slider.value = i  # change first slider
    parameters.children[0].fix.value = True
    with plot.assert_call():
        parameters.children[0].fit.value = True

    class Cost:
        def visualize(self, args):
            return plot(args)

        def __call__(self, a, b):
            return (a - 100) ** 2 + (b + 100) ** 2

    c = Cost()
    m = Minuit(c, 0, 0)
    with plot.assert_call():
        out = m.interactive(raise_on_exception=True)

    # this should modify slider range
    ui = out.children[1]
    header, parameters = ui.children
    fit_button, update_button, reset_button, algo_select = header.children
    assert parameters.children[0].slider.max == 1
    assert parameters.children[1].slider.min == -1
    with plot.assert_call():
        fit_button.click()
    assert_allclose(m.values, (100, -100), atol=1e-5)
    # this should trigger an exception
    plot.raises = True
    with plot.assert_call():
        fit_button.click()


@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_interactive_raises():
    pytest.importorskip("ipywidgets")

    def raiser(args):
        raise ValueError

    m = Minuit(lambda x, y: 0, 0, 1)

    # by default do not raise
    m.interactive(raiser)

    with pytest.raises(ValueError):
        m.interactive(raiser, raise_on_exception=True)


@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_interactive_with_array_func():
    pytest.importorskip("ipywidgets")

    def cost(par):
        return par[0] ** 2 + (par[1] / 2) ** 2

    class TraceArgs:
        nargs = 0

        def __call__(self, par):
            self.nargs = len(par)

    trace_args = TraceArgs()
    m = Minuit(cost, (1, 2))
    m.interactive(trace_args)
    assert trace_args.nargs > 0