[go: up one dir, main page]

File: ipywidget.py

package info (click to toggle)
iminuit 2.30.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,660 kB
  • sloc: cpp: 14,591; python: 11,177; makefile: 11; sh: 5
file content (294 lines) | stat: -rw-r--r-- 9,694 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""Interactive fitting widget for Jupyter notebooks."""

import warnings
import numpy as np
from typing import Dict, Any, Callable
import sys

with warnings.catch_warnings():
    # ipywidgets produces deprecation warnings through use of internal APIs :(
    warnings.simplefilter("ignore")
    try:
        import ipywidgets as widgets
        from ipywidgets.widgets.interaction import show_inline_matplotlib_plots
        from IPython.display import clear_output
        from matplotlib import pyplot as plt
    except ModuleNotFoundError as e:
        e.msg += (
            "\n\nPlease install ipywidgets, IPython, and matplotlib to "
            "enable interactive"
        )
        raise


def make_widget(
    minuit: Any,
    plot: Callable[..., None],
    kwargs: Dict[str, Any],
    raise_on_exception: bool,
):
    """Make interactive fitting widget."""
    # Implementations makes heavy use of closures,
    # we frequently use variables which are defined
    # near the end of the function.
    original_values = minuit.values[:]
    original_limits = minuit.limits[:]

    def plot_with_frame(from_fit, report_success):
        trans = plt.gca().transAxes
        try:
            with warnings.catch_warnings():
                minuit.visualize(plot, **kwargs)
        except Exception:
            if raise_on_exception:
                raise

            import traceback

            plt.figtext(
                0,
                0.5,
                traceback.format_exc(limit=-1),
                fontdict={"family": "monospace", "size": "x-small"},
                va="center",
                color="r",
                backgroundcolor="w",
                wrap=True,
            )
            return

        fval = minuit.fmin.fval if from_fit else minuit._fcn(minuit.values)
        plt.text(
            0.05,
            1.05,
            f"FCN = {fval:.3f}",
            transform=trans,
            fontsize="x-large",
        )
        if from_fit and report_success:
            plt.text(
                0.95,
                1.05,
                f"{'success' if minuit.valid and minuit.accurate else 'FAILURE'}",
                transform=trans,
                fontsize="x-large",
                ha="right",
            )

    def fit():
        if algo_choice.value == "Migrad":
            minuit.migrad()
        elif algo_choice.value == "Scipy":
            minuit.scipy()
        elif algo_choice.value == "Simplex":
            minuit.simplex()
            return False
        else:
            assert False  # pragma: no cover, should never happen
        return True

    class OnParameterChange:
        # Ugly implementation notes:
        # We want the plot when the user moves the slider widget, but not when
        # we update the slider value manually from our code. Unfortunately,
        # the latter also calls OnParameterChange, which leads to superfluous plotting.
        # I could not find a nice way to prevent that (and I tried many), so as a workaround
        # we optionally skip a number of calls, when the slider is updated.
        def __init__(self, skip: int = 0):
            self.skip = skip

        def __call__(self, change: Dict[str, Any] = {}):
            if self.skip > 0:
                self.skip -= 1
                return

            from_fit = change.get("from_fit", False)
            report_success = change.get("report_success", False)
            if not from_fit:
                for i, x in enumerate(parameters):
                    minuit.values[i] = x.slider.value

            if any(x.fit.value for x in parameters):
                saved = minuit.fixed[:]
                for i, x in enumerate(parameters):
                    minuit.fixed[i] = not x.fit.value
                from_fit = True
                report_success = do_fit(None)
                minuit.fixed = saved

            # Implementation like in ipywidegts.interaction.interactive_output
            with out:
                clear_output(wait=True)
                plot_with_frame(from_fit, report_success)
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    show_inline_matplotlib_plots()

    def do_fit(change):
        report_success = fit()
        for i, x in enumerate(parameters):
            x.reset(minuit.values[i])
        if change is None:
            return report_success
        OnParameterChange()({"from_fit": True, "report_success": report_success})

    def on_update_button_clicked(change):
        for x in parameters:
            x.slider.continuous_update = not x.slider.continuous_update

    def on_reset_button_clicked(change):
        minuit.reset()
        minuit.values = original_values
        minuit.limits = original_limits
        for i, x in enumerate(parameters):
            x.reset(minuit.values[i], minuit.limits[i])
        OnParameterChange()()

    class Parameter(widgets.HBox):
        def __init__(self, minuit, par):
            val = minuit.values[par]
            vmin, vmax = minuit.limits[par]
            step = _guess_initial_step(val, vmin, vmax)
            vmin2 = vmin if np.isfinite(vmin) else val - 100 * step
            vmax2 = vmax if np.isfinite(vmax) else val + 100 * step

            tlabel = widgets.Label(par, layout=widgets.Layout(width=f"{longest_par}em"))

            tmin = widgets.BoundedFloatText(
                _round(vmin2),
                min=_make_finite(vmin),
                max=vmax2,
                step=1e-1 * (vmax2 - vmin2),
                layout=widgets.Layout(width="4.1em"),
            )

            tmax = widgets.BoundedFloatText(
                _round(vmax2),
                min=vmin2,
                max=_make_finite(vmax),
                step=1e-1 * (vmax2 - vmin2),
                layout=widgets.Layout(width="4.1em"),
            )

            self.slider = widgets.FloatSlider(
                val,
                min=vmin2,
                max=vmax2,
                step=step,
                continuous_update=True,
                readout_format=".3g",
                layout=widgets.Layout(min_width="50%"),
            )
            self.slider.observe(OnParameterChange(), "value")

            def on_min_change(change):
                self.slider.min = change["new"]
                tmax.min = change["new"]
                lim = minuit.limits[par]
                minuit.limits[par] = (self.slider.min, lim[1])

            def on_max_change(change):
                self.slider.max = change["new"]
                tmin.max = change["new"]
                lim = minuit.limits[par]
                minuit.limits[par] = (lim[0], self.slider.max)

            tmin.observe(on_min_change, "value")
            tmax.observe(on_max_change, "value")

            self.fix = widgets.ToggleButton(
                minuit.fixed[par],
                description="Fix",
                tooltip="Fix",
                layout=widgets.Layout(width="3.1em"),
            )

            self.fit = widgets.ToggleButton(
                False,
                description="Fit",
                tooltip="Fit",
                layout=widgets.Layout(width="3.5em"),
            )

            def on_fix_toggled(change):
                minuit.fixed[par] = change["new"]
                if change["new"]:
                    self.fit.value = False

            def on_fit_toggled(change):
                self.slider.disabled = change["new"]
                if change["new"]:
                    self.fix.value = False
                OnParameterChange()()

            self.fix.observe(on_fix_toggled, "value")
            self.fit.observe(on_fit_toggled, "value")
            super().__init__([tlabel, tmin, self.slider, tmax, self.fix, self.fit])

        def reset(self, value, limits=None):
            self.slider.unobserve_all("value")
            self.slider.value = value
            if limits:
                self.slider.min, self.slider.max = limits
            # Installing the observer actually triggers a notification,
            # we skip it. See notes in OnParameterChange.
            self.slider.observe(OnParameterChange(1), "value")

    longest_par = max(len(par) for par in minuit.parameters)
    parameters = [Parameter(minuit, par) for par in minuit.parameters]

    button_layout = widgets.Layout(max_width="8em")

    fit_button = widgets.Button(
        description="Fit",
        button_style="primary",
        layout=button_layout,
    )
    fit_button.on_click(do_fit)

    update_button = widgets.ToggleButton(
        True,
        description="Continuous",
        layout=button_layout,
    )
    update_button.observe(on_update_button_clicked)

    reset_button = widgets.Button(
        description="Reset",
        button_style="danger",
        layout=button_layout,
    )
    reset_button.on_click(on_reset_button_clicked)

    algo_choice = widgets.Dropdown(
        options=["Migrad", "Scipy", "Simplex"],
        value="Migrad",
        layout=button_layout,
    )

    ui = widgets.VBox(
        [
            widgets.HBox([fit_button, update_button, reset_button, algo_choice]),
            widgets.VBox(parameters),
        ]
    )
    out = widgets.Output()
    OnParameterChange()()
    return widgets.HBox([out, ui])


def _make_finite(x: float) -> float:
    sign = -1 if x < 0 else 1
    if abs(x) == np.inf:
        return sign * sys.float_info.max
    return x


def _guess_initial_step(val: float, vmin: float, vmax: float) -> float:
    if np.isfinite(vmin) and np.isfinite(vmax):
        return 1e-2 * (vmax - vmin)
    return 1e-2


def _round(x: float) -> float:
    return float(f"{x:.1g}")