1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
|
"""
Standard cost functions to minimize for statistical fits.
We provide these for convenience, so that you do not have to write your own for standard
fits. The cost functions optionally use Numba to accelerate some calculations, if Numba
is installed.
**There is no need** to set :attr:`iminuit.Minuit.errordef` manually for any of these
cost functions. :class:`iminuit.Minuit` automatically uses the correct value, which is
provided by each cost function with the attribute ``Cost.errordef``.
What to use when
----------------
- Fit a normalised probability density to data
- Data are not binned: :class:`UnbinnedNLL`
- Data are binned: :class:`BinnedNLL`, also supports histogram of weighted samples
- Fit a density to data, density is not normalised
- Data are not binned: :class:`ExtendedUnbinnedNLL`
- Data are binned: :class:`ExtendedBinnedNLL`, also supports
histogram of weighted samples
- Fit a template to binned data with bin-wise uncertainties on the template
- :class:`Template`, also supports weighted data and weighted template histograms
- Fit of a function f(x) to (x, y, yerror) pairs with normal-distributed fluctuations. x
is one- or multi-dimensional, y is one-dimensional.
- y values contain no outliers: :class:`LeastSquares`
- y values contain outliers: :class:`LeastSquares` with loss function set to
"soft_l1"
- Include constraints from external fits or apply regularisation
- :class:`NormalConstraint`
Combining cost functions
------------------------
All cost functions can be added, which generates a new combined cost function.
Parameters with the same name are shared between component cost functions. Use this to
constrain one or several parameters with different data sets and using different
statistical models for each data set. Gaussian penalty terms can also be added to the
cost function to introduce external knowledge about a parameter.
Model parameter limits
----------------------
The Minuit algorithms support box constrains in parameter space. A user-defined model
can declare that a parameter is only valid over an interval on the real line with the
``Annotated`` type annotation, see :class:`iminuit.Minuit` for details. A typical
example is the sigma parameter of a normal distribution, which must be positive. The
cost functions defined here propagate this information to :class:`iminuit.Minuit`.
Note: The :class:`Template` declares that the template amplitudes must be non-negative,
which is usually the right choice, however, it may be desirable to fit templates which
can have negative amplitudes. To achieve this, simply reset the limits with
:attr:`iminuit.Minuit.limits` after creating the Minuit instance.
User-defined gradients
----------------------
If the user provides a model gradient, the cost functions defined here except
:class:`Template` will then also make their gradient available, which is then
automatically used by :class:`iminuit.Minuit` (see the constructor for details) to
potentially improve the fit (improve convergence or robustness).
Note that it is perfectly normal to use Minuit without a user-defined gradient, and
Minuit does not always benefit from a user-defined gradient. If the gradient is
expensive to compute, the time to converge may increase. If you have trouble with the
fitting process, it is unlikely that the issues are resolved by a user-defined gradient.
Notes
-----
The cost functions defined here have been optimized with knowledge about implementation
details of Minuit to give the highest accucary and the most robust results, so they
should perform well. If you have trouble with your own implementations, try these.
The binned versions of the log-likelihood fits support weighted samples. For each bin of
the histogram, the sum of weights and the sum of squared weights is needed then, see
class documentation for details.
"""
from __future__ import annotations
from .util import (
describe,
merge_signatures,
PerformanceWarning,
_smart_sampling,
_detect_log_spacing,
is_positive_definite,
)
from .typing import Model, ModelGradient, LossFunction
import numpy as np
from numpy.typing import NDArray, ArrayLike
from collections.abc import Sequence as ABCSequence
import abc
from typing import (
List,
Tuple,
Union,
Sequence,
Collection,
Dict,
Any,
Iterable,
Optional,
TypeVar,
Callable,
cast,
)
import warnings
from ._deprecated import deprecated_parameter
__all__ = [
"CHISQUARE",
"NEGATIVE_LOG_LIKELIHOOD",
"chi2",
"multinomial_chi2",
"poisson_chi2",
"template_chi2_jsc",
"template_chi2_da",
"template_nll_asy",
"Cost",
"CostSum",
"Constant",
"BinnedNLL",
"UnbinnedNLL",
"ExtendedBinnedNLL",
"ExtendedUnbinnedNLL",
"Template",
"LeastSquares",
]
T = TypeVar("T", float, NDArray)
CHISQUARE = 1.0
NEGATIVE_LOG_LIKELIHOOD = 0.5
_TINY_FLOAT = np.finfo(float).tiny
def log_or_zero(x):
"""
Evaluate to log(x) for x > 0 and to 0 otherwise.
Parameters
----------
x : array
Argument.
Returns
-------
array
Elementwise contains log(x) for x > 0 and zero otherwise.
"""
# return 0 for x <= 0
r = np.zeros_like(x)
ma = x > 0
r[ma] = np.log(x[ma])
return r
def _unbinned_nll(x):
# sorting makes sum more accurate, protect against x = 0
return -np.sum(np.sort(np.log(x + _TINY_FLOAT)))
def _z_squared(y, ye, ym):
z = (y - ym) / ye
return z * z
def _replace_none(x, replacement):
if x is None:
return replacement
return x
def chi2(y: ArrayLike, ye: ArrayLike, ym: ArrayLike) -> float:
"""
Compute (potentially) chi2-distributed cost.
The value returned by this function is chi2-distributed, if the observed values are
normally distributed around the expected values with the provided standard
deviations.
Parameters
----------
y : array-like with shape (N,)
Observed values.
ye : array-like with shape (N,)
Uncertainties of values.
ym : array-like with shape (N,)
Expected values.
Returns
-------
float
Value of cost function.
"""
y, ye, ym = np.atleast_1d(y, ye, ym)
assert y.ndim == 1
return np.sum(_z_squared(y, ye, ym))
def _chi2_grad(y: ArrayLike, ye: ArrayLike, ym: ArrayLike, gym: ArrayLike) -> NDArray:
"""
Compute gradient of :func:`chi2`.
Parameters
----------
y : array-like with shape (N,)
Observed values.
ye : array-like with shape (N,)
Uncertainties of values.
ym : array-like with shape (N,)
Expected values.
gym : array-like with shape (K, N)
Gradient of ym with respect to K model parameters.
Returns
-------
array with shape (K,)
Gradient of cost function with respect to model parameters.
"""
y, ye, ym, gym = np.atleast_1d(y, ye, ym, gym)
assert y.ndim == 1
assert gym.ndim == 2
return -2 * np.sum((y - ym) * gym * ye**-2, axis=1)
def _soft_l1_cost(y: NDArray, ye: NDArray, ym: NDArray) -> float:
z_sqr = _z_squared(y, ye, ym)
return 2 * np.sum(np.sqrt(1 + z_sqr) - 1)
def _soft_l1_cost_grad(y: NDArray, ye: NDArray, ym: NDArray, gym: NDArray) -> NDArray:
inv_ye = 1 / ye
z = (y - ym) * inv_ye
f = (1 + z**2) ** -0.5
return -2 * np.sum(z * inv_ye * f * gym, axis=tuple(range(1, gym.ndim)))
def poisson_chi2(n: ArrayLike, mu: ArrayLike) -> float:
"""
Compute asymptotically chi2-distributed cost for Poisson-distributed data.
See Baker & Cousins, NIM 221 (1984) 437-442.
Parameters
----------
n : array-like
Observed counts.
mu : array-like
Expected counts per bin. Must satisfy sum(mu) == sum(n).
Returns
-------
float
Cost function value.
Notes
-----
The implementation makes the result asymptotically chi2-distributed,
which helps to maximise the numerical accuracy for Minuit.
"""
n, mu = np.atleast_1d(n, mu)
return 2 * np.sum(n * (log_or_zero(n) - log_or_zero(mu)) + mu - n)
def _poisson_chi2_grad(n: NDArray, mu: NDArray, gmu: NDArray) -> NDArray:
assert gmu.ndim == 2
return 2 * np.sum((1.0 - n / mu) * gmu, axis=1)
def multinomial_chi2(n: ArrayLike, mu: ArrayLike) -> float:
"""
Compute asymptotically chi2-distributed cost for multinomially-distributed data.
See Baker & Cousins, NIM 221 (1984) 437-442.
Parameters
----------
n : array-like
Observed counts.
mu : array-like
Expected counts.
Returns
-------
float
Cost function value.
Notes
-----
The implementation makes the result asymptotically chi2-distributed,
which helps to maximise the numerical accuracy for Minuit.
"""
n, mu = np.atleast_1d(n, mu)
return 2 * np.sum(n * (log_or_zero(n) - log_or_zero(mu)))
def _multinomial_chi2_grad(n: NDArray, mu: NDArray, gmu: NDArray) -> NDArray:
assert gmu.ndim == 2
return -2 * np.sum(n / mu * gmu, axis=1)
def template_chi2_jsc(n: ArrayLike, mu: ArrayLike, mu_var: ArrayLike) -> float:
"""
Compute asymptotically chi2-distributed cost for a template fit.
J.S. Conway, PHYSTAT 2011, https://doi.org/10.48550/arXiv.1103.0354
Parameters
----------
n : array-like
Observed counts.
mu : array-like
Expected counts. This is the sum of the normalised templates scaled with
the component yields. Must be positive everywhere.
mu_var : array-like
Expected variance of mu. Must be positive everywhere.
Returns
-------
float
Asymptotically chi-square-distributed test statistic.
Notes
-----
The implementation deviates slightly from the paper by making the result
asymptotically chi2-distributed, which helps to maximise the numerical
accuracy for Minuit.
"""
n, mu, mu_var = np.atleast_1d(n, mu, mu_var)
beta_var = mu_var / mu**2
# Eq. 15 from https://doi.org/10.48550/arXiv.2206.12346
p = 0.5 - 0.5 * mu * beta_var
beta = p + np.sqrt(p**2 + n * beta_var)
return poisson_chi2(n, mu * beta) + np.sum((beta - 1) ** 2 / beta_var)
def template_chi2_da(n: ArrayLike, mu: ArrayLike, mu_var: ArrayLike) -> float:
"""
Compute asymptotically chi2-distributed cost for a template fit.
H.P. Dembinski, A. Abdelmotteleb, https://doi.org/10.48550/arXiv.2206.12346
Parameters
----------
n : array-like
Observed counts.
mu : array-like
Expected counts. This is the sum of the normalised templates scaled
with the component yields.
mu_var : array-like
Expected variance of mu. Must be positive everywhere.
Returns
-------
float
Asymptotically chi-square-distributed test statistic.
"""
n, mu, mu_var = np.atleast_1d(n, mu, mu_var)
k = mu**2 / mu_var
# avoid divide by zero
beta = (n + k) / (mu + k + _TINY_FLOAT)
return poisson_chi2(n, mu * beta) + poisson_chi2(k, k * beta)
def template_nll_asy(n: ArrayLike, mu: ArrayLike, mu_var: ArrayLike) -> float:
"""
Compute marginalized negative log-likelikihood for a template fit.
This is the negative logarithm of equation 3.15 of the paper by
C.A. Argüelles, A. Schneider, T. Yuan,
https://doi.org/10.1007/JHEP06(2019)030.
The authors use a Bayesian approach and integrate over the nuisance
parameters. Like the other Barlow-Beeston-lite methods, this is an
approximation. The resulting likelihood cannot be turned into an
asymptotically chi-square distributed test statistic as detailed
in Baker & Cousins, NIM 221 (1984) 437-442.
Parameters
----------
n : array-like
Observed counts.
mu : array-like
Expected counts. This is the sum of the normalised templates scaled
with the component yields.
mu_var : array-like
Expected variance of mu. Must be positive everywhere.
Returns
-------
float
Negative log-likelihood function value.
"""
from scipy.special import loggamma as lg
n, mu, mu_var = np.atleast_1d(n, mu, mu_var)
alpha = mu**2 / mu_var + 1
beta = mu / mu_var
return -np.sum(
alpha * np.log(beta)
+ lg(n + alpha)
- (lg(n + 1) + (n + alpha) * np.log(1 + beta) + lg(alpha))
)
# If numba is available, use it to accelerate computations in float32 and float64
# precision. Fall back to plain numpy for float128 which is not currently supported
# by numba.
try:
from numba import njit
from numba.extending import overload as nb_overload
jit = njit(nogil=True, cache=True, error_model="numpy")
@nb_overload(log_or_zero, inline="always")
def _ol_log_or_zero(x):
return log_or_zero # pragma: no cover
@nb_overload(_z_squared, inline="always")
def _ol_z_squared(y, ye, ym):
return _z_squared # pragma: no cover
_unbinned_nll_np = _unbinned_nll
_unbinned_nll_nb = jit(_unbinned_nll_np)
def _unbinned_nll(x):
if x.dtype in (np.float32, np.float64):
return _unbinned_nll_nb(x)
# fallback to numpy for float128
return _unbinned_nll_np(x)
_multinomial_chi2_np = multinomial_chi2
_multinomial_chi2_nb = jit(_multinomial_chi2_np)
def multinomial_chi2(n: ArrayLike, mu: ArrayLike) -> float: # noqa
n, mu = np.atleast_1d(n, mu)
if mu.dtype in (np.float32, np.float64):
return _multinomial_chi2_nb(n, mu)
# fallback to numpy for float128
return _multinomial_chi2_np(n, mu)
multinomial_chi2.__doc__ = _multinomial_chi2_np.__doc__
_poisson_chi2_np = poisson_chi2
_poisson_chi2_nb = jit(_poisson_chi2_np)
def poisson_chi2(n: ArrayLike, mu: ArrayLike) -> float: # noqa
n, mu = np.atleast_1d(n, mu)
if mu.dtype in (np.float32, np.float64):
return _poisson_chi2_nb(n, mu)
# fallback to numpy for float128
return _poisson_chi2_np(n, mu)
poisson_chi2.__doc__ = _poisson_chi2_np.__doc__
_chi2_np = chi2
_chi2_nb = jit(_chi2_np)
def chi2(y: ArrayLike, ye: ArrayLike, ym: ArrayLike) -> float: # noqa
y, ye, ym = np.atleast_1d(y, ye, ym)
if ym.dtype in (np.float32, np.float64):
return _chi2_nb(y, ye, ym)
# fallback to numpy for float128
return _chi2_np(y, ye, ym)
chi2.__doc__ = _chi2_np.__doc__
_soft_l1_cost_np = _soft_l1_cost
_soft_l1_cost_nb = jit(_soft_l1_cost_np)
def _soft_l1_cost(y: NDArray, ye: NDArray, ym: NDArray) -> float:
if ym.dtype in (np.float32, np.float64):
return _soft_l1_cost_nb(y, ye, ym)
# fallback to numpy for float128
return _soft_l1_cost_np(y, ye, ym)
except ModuleNotFoundError:
pass
class Cost(abc.ABC):
"""
Base class for all cost functions.
:meta private:
"""
__slots__ = ("_parameters", "_verbose")
_parameters: Dict[str, Optional[Tuple[float, float]]]
_verbose: int
@property
def errordef(self):
"""
For internal use.
:meta private:
"""
return self._errordef()
def _errordef(self):
return CHISQUARE
@property
def ndata(self):
"""
Return number of points in least-squares fits or bins in a binned fit.
Infinity is returned if the cost function is unbinned. This is used by Minuit to
compute the reduced chi2, a goodness-of-fit estimate.
"""
return self._ndata()
@property
def npar(self):
"""Return total number of model parameters."""
return len(self._parameters)
@abc.abstractmethod
def _ndata(self):
NotImplemented # pragma: no cover
@property
def verbose(self):
"""
Access verbosity level.
Set this to 1 to print all function calls with input and output.
"""
return self._verbose
@verbose.setter
def verbose(self, value: int):
self._verbose = value
def __init__(
self, parameters: Dict[str, Optional[Tuple[float, float]]], verbose: int
):
"""For internal use."""
self._parameters = parameters
self._verbose = verbose
def __add__(self, rhs):
"""
Add two cost functions to form a combined cost function.
Returns
-------
CostSum
"""
return CostSum(self, rhs)
def __radd__(self, lhs):
"""
Add two cost functions to form a combined cost function.
Returns
-------
CostSum
"""
return CostSum(lhs, self)
def __call__(self, *args: float) -> float:
"""
Evaluate the cost function.
If verbose >= 1, print arguments and result.
Parameters
----------
*args : float
Parameter values.
Returns
-------
float
"""
r = self._value(args)
if self.verbose >= 1:
print(args, "->", r)
return r
def grad(self, *args: float) -> NDArray:
"""
Compute gradient of the cost function.
This requires that a model gradient is provided.
Parameters
----------
*args : float
Parameter values.
Returns
-------
ndarray of float
The length of the array is equal to the length of args.
"""
return self._grad(args)
@property
def has_grad(self) -> bool:
"""Return True if cost function can compute a gradient."""
return self._has_grad()
@abc.abstractmethod
def _value(self, args: Sequence[float]) -> float: ... # pragma: no cover
@abc.abstractmethod
def _grad(self, args: Sequence[float]) -> NDArray: ... # pragma: no cover
@abc.abstractmethod
def _has_grad(self) -> bool: ... # pragma: no cover
class Constant(Cost):
"""
Cost function that represents a constant.
If your cost function produces results that are far away from O(1), adding a
constant that brings the value closer to zero may improve the numerical stability.
"""
__slots__ = "value"
def __init__(self, value: float):
"""Initialize constant with a value."""
self.value = value
super().__init__({}, False)
def _ndata(self):
return 0
def _value(self, args: Sequence[float]) -> float:
return self.value
def _grad(self, args: Sequence[float]) -> NDArray:
return np.zeros(0)
@staticmethod
def _has_grad():
return True
class CostSum(Cost, ABCSequence):
"""
Sum of cost functions.
Users do not need to create objects of this class themselves. They should just add
cost functions, for example::
nll = UnbinnedNLL(...)
lsq = LeastSquares(...)
ncs = NormalConstraint(...)
csum = nll + lsq + ncs
CostSum is used to combine data from different experiments or to combine normal cost
functions with penalty terms (see NormalConstraint).
The parameters of CostSum are the union of all parameters of its constituents.
Supports the sequence protocol to access the constituents.
Warnings
--------
CostSum does not support cost functions that accept a parameter array, because the
function signature does not allow one to determine how many parameters are accepted
by the function and which parameters overlap between different cost functions.
"""
__slots__ = "_items", "_maps"
def __init__(self, *items: Union[Cost, float]):
"""
Initialize with cost functions.
Parameters
----------
*items : Cost
Cost functions. May also be other CostSum functions.
"""
self._items: List[Cost] = []
for item in items:
if isinstance(item, CostSum):
self._items += item._items
elif isinstance(item, (int, float)):
if item != 0:
self._items.append(Constant(item))
else:
self._items.append(item)
signatures, self._maps = merge_signatures(self._items, annotations=True)
super().__init__(signatures, max(c.verbose for c in self._items))
def _split(self, args: Sequence[float]):
for component, cmap in zip(self._items, self._maps):
component_args = tuple(args[i] for i in cmap)
yield component, component_args
def _value(self, args: Sequence[float]) -> float:
r = 0.0
for component, component_args in self._split(args):
r += component._value(component_args) / component.errordef
return r
def _grad(self, args: Sequence[float]) -> NDArray:
r = np.zeros(self.npar)
for component, indices in zip(self._items, self._maps):
component_args = tuple(args[i] for i in indices)
r[indices] += component._grad(component_args) / component.errordef
return r
def _has_grad(self) -> bool:
return all(component.has_grad for component in self._items)
def _ndata(self):
return sum(c.ndata for c in self._items)
def __len__(self):
"""Return number of constituent cost functions."""
return self._items.__len__()
def __getitem__(self, key):
"""Get constituent cost function by index."""
return self._items.__getitem__(key)
def visualize(
self, args: Sequence[float], component_kwargs: Dict[int, Dict[str, Any]] = None
):
"""
Visualize data and model agreement (requires matplotlib).
The visualization is drawn with matplotlib.pyplot into the current figure.
Subplots are created to visualize each part of the cost function, the figure
height is increased accordingly. Parts without a visualize method are silently
ignored.
Parameters
----------
args : array-like
Parameter values.
component_kwargs : dict of dicts, optional
Dict that maps an index to dict of keyword arguments. This can be
used to pass keyword arguments to a visualize method of a component with
that index.
**kwargs :
Other keyword arguments are forwarded to all components.
"""
from matplotlib import pyplot as plt
n = sum(hasattr(comp, "visualize") for comp in self)
fig = plt.gcf()
fig.set_figwidth(n * fig.get_figwidth() / 1.5)
_, ax = plt.subplots(1, n, num=fig.number)
if component_kwargs is None:
component_kwargs = {}
i = 0
for k, (comp, cargs) in enumerate(self._split(args)):
if not hasattr(comp, "visualize"):
continue
kwargs = component_kwargs.get(k, {})
plt.sca(ax[i])
comp.visualize(cargs, **kwargs)
i += 1
class MaskedCost(Cost):
"""
Base class for cost functions that support data masking.
:meta private:
"""
__slots__ = "_data", "_mask", "_masked"
_mask: Optional[NDArray]
def __init__(
self,
parameters: Dict[str, Optional[Tuple[float, float]]],
data: NDArray,
verbose: int,
):
"""For internal use."""
self._data = data
self._mask = None
self._update_cache()
Cost.__init__(self, parameters, verbose)
@property
def mask(self):
"""
Boolean array, array of indices, or None.
If not None, only values selected by the mask are considered. The mask acts on
the first dimension of a value array, i.e. values[mask]. Default is None.
"""
return self._mask
@mask.setter
def mask(self, mask: Optional[ArrayLike]):
self._mask = None if mask is None else np.asarray(mask)
self._update_cache()
@property
def data(self):
"""Return data samples."""
return self._data
@data.setter
def data(self, value: ArrayLike):
self._data[...] = value
self._update_cache()
def _update_cache(self):
self._masked = self._data[_replace_none(self._mask, ...)]
class MaskedCostWithPulls(MaskedCost):
"""
Base class for cost functions with pulls.
:meta private:
"""
def pulls(self, args: Sequence[float]) -> NDArray:
"""
Return studentized residuals (aka pulls).
Parameters
----------
args : sequence of float
Parameter values.
Returns
-------
array
Array of pull values. If the cost function is masked, the array contains NaN
values where the mask value is False.
Notes
-----
Pulls allow one to estimate how well a model fits the data. A pull is a value
computed for each data point. It is given by (observed - predicted) /
standard-deviation. If the model is correct, the expectation value of each pull
is zero and its variance is one in the asymptotic limit of infinite samples.
Under these conditions, the chi-square statistic is computed from the sum of
pulls squared has a known probability distribution if the model is correct. It
therefore serves as a goodness-of-fit statistic.
Beware: the sum of pulls squared in general is not identical to the value
returned by the cost function, even if the cost function returns a chi-square
distributed test-statistic. The cost function is computed in a slightly
differently way that makes the return value approach the asymptotic chi-square
distribution faster than a test statistic based on sum of pulls squared. In
summary, only use pulls for plots. Compute the chi-square test statistic
directly from the cost function.
"""
return self._pulls(args)
def _ndata(self):
return np.prod(self._masked.shape[: self._ndim])
@abc.abstractmethod
def _pulls(self, args: Sequence[float]) -> NDArray: ... # pragma: no cover
class UnbinnedCost(MaskedCost):
"""
Base class for unbinned cost functions.
:meta private:
"""
__slots__ = "_model", "_model_grad", "_log"
def __init__(
self,
data,
model: Model,
verbose: int,
log: bool,
grad: Optional[ModelGradient],
name: Optional[Sequence[str]],
):
"""For internal use."""
self._model = model
self._log = log
self._model_grad = grad
super().__init__(_model_parameters(model, name), _norm(data), verbose)
@abc.abstractproperty
def pdf(self):
"""Get probability density model."""
... # pragma: no cover
@abc.abstractproperty
def scaled_pdf(self):
"""Get number density model."""
... # pragma: no cover
def _ndata(self):
# unbinned likelihoods have infinite degrees of freedom
return np.inf
def _npoints(self):
# cannot use len(self._masked) because multi-dimensional data has format
# (K, N) with K dimensions and N points
return self._masked.shape[-1]
@deprecated_parameter(bins="nbins")
def visualize(
self,
args: Sequence[float],
model_points: Union[int, Sequence[float]] = 0,
bins: int = 50,
):
"""
Visualize data and model agreement (requires matplotlib).
The visualization is drawn with matplotlib.pyplot into the current axes.
Parameters
----------
args : array-like
Parameter values.
model_points : int or array-like, optional
How many points to use to draw the model. Default is 0, in this case
an smart sampling algorithm selects the number of points. If array-like,
it is interpreted as the point locations.
bins : int, optional
number of bins. Default is 50 bins.
"""
from matplotlib import pyplot as plt
x = np.sort(self.data)
if x.ndim > 1:
raise ValueError("visualize is not implemented for multi-dimensional data")
# this implementation only works with a histogram with linear spacing
if isinstance(model_points, Iterable):
xm = np.array(model_points)
ym = self.scaled_pdf(xm, *args)
elif model_points > 0:
if _detect_log_spacing(x):
xm = np.geomspace(x[0], x[-1], model_points)
else:
xm = np.linspace(x[0], x[-1], model_points)
ym = self.scaled_pdf(xm, *args)
else:
xm, ym = _smart_sampling(lambda x: self.scaled_pdf(x, *args), x[0], x[-1])
# use xm for range, which may be narrower or wider than x range
n, xe = np.histogram(x, bins=bins, range=(xm[0], xm[-1]))
cx = 0.5 * (xe[1:] + xe[:-1])
dx = xe[1] - xe[0]
plt.errorbar(cx, n, n**0.5, fmt="ok")
plt.fill_between(xm, 0, ym * dx, fc="C0")
def fisher_information(self, *args: float) -> NDArray:
"""
Estimate Fisher information for model and sample.
The estimated Fisher information is only meaningful if the arguments provided
are estimates of the true values.
Parameters
----------
*args: float
Estimates of model parameters.
"""
g = self._pointwise_score(args)
return np.einsum("ji,ki->jk", g, g)
def covariance(self, *args: float) -> NDArray:
"""
Estimate covariance of the parameters with the sandwich estimator.
This requires that the model gradient is provided, and that the arguments are
the maximum-likelihood estimates. The sandwich estimator is only asymptotically
correct.
Parameters
----------
*args : float
Maximum-likelihood estimates of the parameter values.
Returns
-------
ndarray of float
The array has shape (K, K) for K arguments.
"""
return np.linalg.inv(self.fisher_information(*args))
@abc.abstractmethod
def _pointwise_score(
self, args: Sequence[float]
) -> NDArray: ... # pragma: no cover
def _has_grad(self) -> bool:
return self._model_grad is not None
class UnbinnedNLL(UnbinnedCost):
"""
Unbinned negative log-likelihood.
Use this if only the shape of the fitted PDF is of interest and the original
unbinned data is available. The data can be one- or multi-dimensional.
"""
__slots__ = ()
@property
def pdf(self):
"""Get probability density model."""
if self._log:
return lambda *args: np.exp(self._model(*args))
return self._model
@property
def scaled_pdf(self):
"""Get number density model."""
scale = np.prod(self.data.shape)
if self._log:
return lambda *args: scale * np.exp(self._model(*args))
return lambda *args: scale * self._model(*args)
def __init__(
self,
data: ArrayLike,
pdf: Model,
*,
verbose: int = 0,
log: bool = False,
grad: Optional[ModelGradient] = None,
name: Optional[Sequence[str]] = None,
):
"""
Initialize UnbinnedNLL with data and model.
Parameters
----------
data : array-like
Sample of observations. If the observations are multidimensional, data must
have the shape (D, N), where D is the number of dimensions and N the number
of data points.
pdf : callable
Probability density function of the form f(data, par0, [par1, ...]), where
data is the data sample and par0, ... are model parameters. If the data are
multivariate, data passed to f has shape (D, N), where D is the number of
dimensions and N the number of data points. Must return an array with the
shape (N,).
verbose : int, optional
Verbosity level. 0: is no output (default). 1: print current args and
negative log-likelihood value.
log : bool, optional
Distributions of the exponential family (normal, exponential, poisson, ...)
allow one to compute the logarithm of the pdf directly, which is more
accurate and efficient than numerically computing ``log(pdf)``. Set this
to True, if the model returns the logpdf instead of the pdf.
Default is False.
grad : callable or None, optional
Optionally pass the gradient of the pdf. Has the same calling signature like
the pdf, but must return an array with the shape (K, N), where N is the
number of data points and K is the number of parameters. If `log` is True,
the function must return the gradient of the logpdf instead of the pdf. The
gradient can be used by Minuit to improve or speed up convergence and to
compute the sandwich estimator for the variance of the parameter estimates.
Default is None.
name : sequence of str or None, optional
Optional names for each parameter of the model (in order). Must have the
same length as there are model parameters. Default is None.
"""
super().__init__(data, pdf, verbose, log, grad, name)
def _value(self, args: Sequence[float]) -> float:
f = self._eval_model(args)
if self._log:
return -2.0 * np.sum(f)
return 2.0 * _unbinned_nll(f)
def _grad(self, args: Sequence[float]) -> NDArray:
g = self._pointwise_score(args)
return -2.0 * np.sum(g, axis=1)
def _pointwise_score(self, args: Sequence[float]) -> NDArray:
g = self._eval_model_grad(args)
if self._log:
return g
f = self._eval_model(args)
return g / f
def _eval_model(self, args: Sequence[float]) -> float:
data = self._masked
return _normalize_output(self._model(data, *args), "model", self._npoints())
def _eval_model_grad(self, args: Sequence[float]) -> NDArray:
if self._model_grad is None:
raise ValueError("no gradient available") # pragma: no cover
data = self._masked
return _normalize_output(
self._model_grad(data, *args), "model gradient", self.npar, self._npoints()
)
class ExtendedUnbinnedNLL(UnbinnedCost):
"""
Unbinned extended negative log-likelihood.
Use this if shape and normalization of the fitted PDF are of interest and the
original unbinned data is available. The data can be one- or multi-dimensional.
"""
__slots__ = ()
@property
def pdf(self):
"""Get probability density model."""
if self._log:
def fn(*args):
n, x = self._model(*args)
return np.exp(x) / n
else:
def fn(*args):
n, x = self._model(*args)
return x / n
return fn
@property
def scaled_pdf(self):
"""Get density model."""
if self._log:
return lambda *args: np.exp(self._model(*args)[1])
return lambda *args: self._model(*args)[1]
def __init__(
self,
data: ArrayLike,
scaled_pdf: Model,
*,
verbose: int = 0,
log: bool = False,
grad: Optional[ModelGradient] = None,
name: Optional[Sequence[str]] = None,
):
"""
Initialize cost function with data and model.
Parameters
----------
data : array-like
Sample of observations. If the observations are multidimensional, data must
have the shape (D, N), where D is the number of dimensions and N the number
of data points.
scaled_pdf : callable
Density function of the form f(data, par0, [par1, ...]), where data is the
sample and par0, ... are model parameters. Must return a tuple (<integral
over f in data window>, <f evaluated at data points>). The first value is
the density integrated over the data window, the interval that we consider
for the fit. For example, if the data are exponentially distributed, but we
fit only the interval (0, 5), then the first value is the density integrated
from 0 to 5. If the data are multivariate, data passed to f has shape (D,
N), where D is the number of dimensions and N the number of data points.
verbose : int, optional
Verbosity level. 0: is no output (default). 1: print current args and
negative log-likelihood value.
log : bool, optional
Distributions of the exponential family (normal, exponential, poisson, ...)
allow one to compute the logarithm of the pdf directly, which is more
accurate and efficient than effectively doing ``log(exp(logpdf))``. Set this
to True, if the model returns the logarithm of the density as the second
argument instead of the density. Default is False.
grad : callable or None, optional
Optionally pass the gradient of the density function. Has the same calling
signature like the density function, but must return two arrays. The first
array has shape (K,) where K are the number of parameters, while the second
has shape (K, N), where N is the number of data points. The first array is
the gradient of the integrated density. The second array is the gradient of
the density itself. If `log` is True, the second array must be the gradient
of the log-density instead. The gradient can be used by Minuit to improve or
speed up convergence and to compute the sandwich estimator for the variance
of the parameter estimates. Default is None.
name : sequence of str or None, optional
Optional names for each parameter of the model (in order). Must have the
same length as there are model parameters. Default is None.
"""
super().__init__(data, scaled_pdf, verbose, log, grad, name)
def _value(self, args: Sequence[float]) -> float:
fint, f = self._eval_model(args)
if self._log:
return 2 * (fint - np.sum(f))
return 2 * (fint + _unbinned_nll(f))
def _grad(self, args: Sequence[float]) -> NDArray:
g = self._pointwise_score(args)
return -2 * np.sum(g, axis=1)
def _pointwise_score(self, args: Sequence[float]) -> NDArray:
gint, g = self._eval_model_grad(args)
m = self._npoints()
if self._log:
return g - (gint / m)[:, np.newaxis]
_, f = self._eval_model(args)
return g / f - (gint / m)[:, np.newaxis]
def _eval_model(self, args: Sequence[float]) -> Tuple[float, float]:
data = self._masked
fint, f = self._model(data, *args)
f = _normalize_output(f, "model", self._npoints(), msg="in second position")
return fint, f
def _eval_model_grad(self, args: Sequence[float]) -> Tuple[NDArray, NDArray]:
if self._model_grad is None:
raise ValueError("no gradient available") # pragma: no cover
data = self._masked
gint, g = self._model_grad(data, *args)
gint = _normalize_output(
gint, "model gradient", self.npar, msg="in first position"
)
g = _normalize_output(
g, "model gradient", self.npar, self._npoints(), msg="in second position"
)
return gint, g
class BinnedCost(MaskedCostWithPulls):
"""
Base class for binned cost functions to support histograms filled with weights.
Histograms filled with weights are supported by applying the Bohm-Zech transform.
The Bohm-Zech approach was further generalized to handle sums of weights which are
negative. See Baker & Cousins, NIM 221 (1984) 437-442; Bohm and Zech, NIMA 748
(2014) 1-6; H. Dembinski, M. Schmelling, R. Waldi, Nucl.Instrum.Meth.A 940 (2019)
135-141.
Bohm and Zech use the scaled Poisson distribution (SPD) as an approximate way to
handle sums of weights instead of Poisson counts. This approach also works for
multinomial distributions. The idea of the Bohm and Zech is to use the likelihood
for Poisson distributed data also for weighted data. They show that one can match
the first and second moment of the compound Poisson distribution for weighted data
with a single Poisson distribution with a scaling factor s, that is multiplied with
the predicted expectation and the observation.
This scaling factor is computed as s = sum(wi) / sum(wi**2), wi are the weights in
the current bin. Instead of the Baker & Cousins transformed log-likelihood
l(n; mu) for Poisson-distributed data, where n is the observed count and mu is the
expectation, we now compute l(sum(w) * s; mu * s), this can be further simplified:
l(w * s, mu * s) = 2 * [(w * s) * (log(w * s) - log(mu * s)) - s * mu + s * w]
= 2 * s * [w * (log(w) - log(mu)) - mu + w]
= s * l(w, mu)
For multinomially-distributed data and s = 1, sum(w-mu) = 0, which is why these
terms can be omitted in the standard calculation without weights, but in case of
weighted counts, sum(s * (w - m)) != 0 and the terms must be kept.
The original formulas from Bohm and Zech are only applicable if w >= 0 (with the
extra condition that w * log(w) evaluates to 0 for w = 0). One can generalize the
formula to w < 0, which is relevant in practice for example in fits of sweighted
samples, by computing s = abs(sum(wi)) / sum(wi ** 2) and replacing w * log(w) with
0 for w <= 0.
This works, because this extension has the right gradient. The gradient should be
equal to hat of the quadratic function s * (w - mu)**2/mu', where mu'=mu but fixed
during the gradient computation, see D. Dembinski, M. Schmelling, R. Waldi. The
minimum of this quadratic function yields an unbiased estimate of mu, even if some w
are negative. Since the quadratic function and the original function have the same
gradient, the minima of both functions are the same, and the original function also
yields an unbiased estimate.
The gradient is not affected by the particular choice of how to handle w * log(w)
with w < 0, since this term drops out in the computation of the gradient. Other
choices are possible. Our goal was to select an option which keeps the function
minimum approximately chi-square distributed, although that property tends to
dissolve when negative weights are involved. The minimum can even become negative.
:meta private:
"""
__slots__ = "_xe", "_ndim", "_bohm_zech_n", "_bohm_zech_s"
_xe: Union[NDArray, Tuple[NDArray, ...]]
_ndim: int
_bohm_zech_n: NDArray
_bohm_zech_s: Optional[NDArray]
n = MaskedCost.data
@property
def xe(self):
"""Access bin edges."""
return self._xe
def __init__(
self,
parameters: Dict[str, Optional[Tuple[float, float]]],
n: ArrayLike,
xe: Union[ArrayLike, Sequence[ArrayLike]],
verbose: int,
):
"""For internal use."""
if not isinstance(xe, Iterable):
raise ValueError("xe must be iterable")
shape = _shape_from_xe(xe)
self._ndim = len(shape)
if self._ndim == 1:
self._xe = _norm(cast(ArrayLike, xe))
else:
self._xe = tuple(_norm(xei) for xei in xe)
n = _norm(n)
is_weighted = n.ndim > self._ndim and n.shape[-1] == 2
if n.ndim != (self._ndim + int(is_weighted)):
raise ValueError("n must either have same dimension as xe or one extra")
xei: NDArray
for i, xei in enumerate([self._xe] if self._ndim == 1 else self._xe):
if len(xei) != n.shape[i] + 1:
raise ValueError(
f"n and xe have incompatible shapes along dimension {i}, "
"xe must be longer by one element along each dimension"
)
# _bohm_zech_s will be set properly when init of base class
# is called, which in turn calls our _update_cache() override
self._bohm_zech_s = np.zeros(0) if is_weighted else None
super().__init__(parameters, n, verbose)
def prediction(
self, args: Sequence[float]
) -> Union[NDArray, Tuple[NDArray, NDArray]]:
"""
Return the bin-wise expectation for the fitted model.
Parameters
----------
args : array-like
Parameter values.
Returns
-------
NDArray
Model prediction for each bin. The expectation is always returned for all
bins, even if some bins are temporarily masked.
"""
return self._pred(args)
def visualize(self, args: Sequence[float]) -> None:
"""
Visualize data and model agreement (requires matplotlib).
The visualization is drawn with matplotlib.pyplot into the current axes.
Parameters
----------
args : sequence of float
Parameter values.
Notes
-----
The automatically provided visualization for multi-dimensional data set is often
not very pretty, but still helps to judge whether the fit is reasonable. Since
there is no obvious way to draw higher dimensional data with error bars in
comparison to a model, the visualization shows all data bins as a single
sequence.
"""
return self._visualize(args)
def _visualize(self, args: Sequence[float]) -> None:
from matplotlib import pyplot as plt
n, ne = self._n_err()
mu = self.prediction(args)
assert not isinstance(mu, tuple)
if self._ndim > 1:
# flatten higher-dimensional data
n = n.reshape(-1)
ne = ne.reshape(-1)
mu = mu.reshape(-1)
# just use bin numbers instead of original values
xe = np.arange(len(n) + 1) - 0.5
cx = np.arange(len(n)).astype(float)
else:
xe = self.xe
cx = 0.5 * (xe[1:] + xe[:-1])
plt.errorbar(cx, n, ne, fmt="ok")
plt.stairs(mu, xe, fill=True, color="C0")
@abc.abstractmethod
def _pred(
self, args: Sequence[float]
) -> Union[NDArray, Tuple[NDArray, NDArray]]: ... # pragma: no cover
def _n_err(self) -> Tuple[NDArray, NDArray]:
d = self.data
if self._bohm_zech_s is None:
n = d.copy()
err = d**0.5
else:
n = d[..., 0].copy()
err = d[..., 1] ** 0.5
# mask values where error is zero
ma = err == 0
if self.mask is not None:
ma = ~self.mask
n[ma] = np.nan
err[ma] = np.nan
return n, err
def _pulls(self, args: Sequence[float]) -> NDArray:
mu = self.prediction(args)
n, ne = self._n_err()
return (n - mu) / ne
def _update_cache(self):
super()._update_cache()
n = self._masked
if self._bohm_zech_s is not None:
val = n[..., 0]
var = n[..., 1]
s = np.zeros_like(val)
ma = var > 0
s[ma] = np.abs(val[ma]) / var[ma]
# Use median of s from bins with entries to bins which have zero entries.
# This is arbitrary, but still better than other arbitrary choices.
s[~ma] = np.median(s[ma])
self._bohm_zech_s = s
self._bohm_zech_n = val * s
else:
self._bohm_zech_n = n
def _transformed(self, val: NDArray) -> Tuple[NDArray, NDArray]:
s = self._bohm_zech_s
ma = self.mask
if ma is not None:
val = val[ma]
n = self._bohm_zech_n
if s is None:
return n, val
return n, val * s
def _transformed2(
self, val: NDArray, var: NDArray
) -> Tuple[NDArray, NDArray, NDArray]:
s = self._bohm_zech_s
ma = self.mask
if ma is not None:
val = val[ma]
var = var[ma]
n = self._bohm_zech_n
if s is None:
return n, val, var
return n, val * s, var * s**2
def _counts(self):
if self._bohm_zech_s is None:
return self._masked
return self._masked[..., 0]
class BinnedCostWithModel(BinnedCost):
"""
Base class for binned cost functions with parametric model.
:meta private:
"""
__slots__ = (
"_xe_shape",
"_model",
"_model_xe",
"_model_xm",
"_model_dx",
"_model_len",
"_model_grad",
"_pred_impl",
)
_model_xe: np.ndarray
_xe_shape: Union[Tuple[int], Tuple[int, ...]]
def __init__(self, n, xe, model, verbose, grad, use_pdf, name):
"""For internal use."""
self._model = model
self._model_grad = grad
if use_pdf and grad:
raise ValueError("keywords use_pdf and grad cannot be used together")
if use_pdf == "approximate":
self._pred_impl = self._pred_approximate
elif use_pdf == "numerical":
self._pred_impl = self._pred_numerical
elif use_pdf == "":
self._pred_impl = self._pred_cdf
else:
msg = (
f"use_pdf={use_pdf} is not understood, "
"allowed values are '', 'approximate', or 'numerical'"
)
raise ValueError(msg)
super().__init__(_model_parameters(model, name), n, xe, verbose)
if self._ndim == 1:
self._xe_shape = (len(self.xe),)
self._model_xe = _norm(self.xe)
if use_pdf:
dx = np.diff(self._model_xe)
self._model_dx = dx
self._model_xm = self._model_xe[:-1] + 0.5 * dx
else:
self._xe_shape = tuple(len(xei) for xei in self.xe)
self._model_xe = np.vstack(
[x.flatten() for x in np.meshgrid(*self.xe, indexing="ij")]
)
if use_pdf == "approximate":
dx = [np.diff(xe) for xe in self.xe]
xm = [xei[:-1] + 0.5 * dxi for (xei, dxi) in zip(self.xe, dx)]
xm = np.meshgrid(*xm, indexing="ij")
dx = np.meshgrid(*dx, indexing="ij")
self._model_xm = np.array(xm)
self._model_dx = np.prod(dx, axis=0)
elif use_pdf == "numerical":
raise ValueError(
'use_pdf="numerical" is not supported for '
"multidimensional histograms"
)
self._model_len = np.prod(self._xe_shape)
def _pred(self, args: Sequence[float]) -> NDArray:
return self._pred_impl(args)
def _pred_cdf(self, args: Sequence[float]) -> NDArray:
d = self._model(self._model_xe, *args)
d = _normalize_output(d, "model", self._model_len)
if self._ndim > 1:
d = d.reshape(self._xe_shape)
for i in range(self._ndim):
d = np.diff(d, axis=i)
# differences can come out negative due to round-off error in subtraction,
# we set negative values to zero
d[d < 0] = 0
return d
def _pred_approximate(self, args: Sequence[float]) -> NDArray:
y = self._model(self._model_xm, *args)
return y * self._model_dx
def _pred_numerical(self, args: Sequence[float]) -> NDArray:
from scipy.integrate import quad
assert self._ndim == 1
d = np.empty(self._model_len - 1)
for i in range(self._model_len - 1):
a = self._model_xe[i]
b = self._model_xe[i + 1]
d[i] = quad(lambda x: self._model(x, *args), a, b)[0]
return d
def _pred_grad(self, args: Sequence[float]) -> NDArray:
d = self._model_grad(self._model_xe, *args)
d = _normalize_output(d, "model gradient", self.npar, self._model_len)
if self._ndim > 1:
d = d.reshape((self.npar, *self._xe_shape))
for i in range(1, self._ndim + 1):
d = np.diff(d, axis=i)
return d
def _has_grad(self) -> bool:
return self._model_grad is not None
class Template(BinnedCost):
"""
Binned cost function for a template fit with uncertainties on the template.
This cost function is for a mixture of components. Use this if the sample originate
from two or more components and you are interested in estimating the yield that
originates from one or more components. In high-energy physics, one component is
often a peaking signal over a smooth background component. A component can be
described by a parametric model or a template.
A parametric model is accepted in form of a scaled cumulative density function,
while a template is a non-parametric shape estimate obtained by histogramming a
Monte-Carlo simulation. Even if the Monte-Carlo simulation is asymptotically
correct, estimating the shape from a finite simulation sample introduces some
uncertainty. This cost function takes that additional uncertainty into account.
There are several ways to fit templates and take the sampling uncertainty into
account. Barlow and Beeston [1]_ found an exact likelihood for this problem, with
one nuisance parameter per component per bin. Solving this likelihood is somewhat
challenging though. The Barlow-Beeston likelihood also does not handle the
additional uncertainty in weighted templates unless the weights per bin are all
equal.
Other works [2]_ [3]_ [4]_ describe likelihoods that use only one nuisance parameter
per bin, which is an approximation. Some marginalize over the nuisance parameters
with some prior, while others profile over the nuisance parameter. This class
implements several of these methods. The default method is the one which performs
best under most conditions, according to current knowledge. The default may change
if this assessment changes.
The cost function returns an asymptotically chi-square distributed test statistic,
except for the method "asy", where it is the negative logarithm of the marginalised
likelihood instead. The standard transform [5]_ which we use convert likelihoods
into test statistics only works for (profiled) likelihoods, not for likelihoods
marginalized over a prior.
All methods implemented here have been generalized to work with both weighted data
and weighted templates, under the assumption that the weights are independent of the
data. This is not the case for sWeights, and the uncertaintes for results obtained
with sWeights will only be approximately correct [6]_. The methods have been further
generalized to allow fitting a mixture of parametric models and templates.
.. [1] Barlow and Beeston, Comput.Phys.Commun. 77 (1993) 219-228
.. [2] Conway, PHYSTAT 2011 proceeding, https://doi.org/10.48550/arXiv.1103.0354
.. [3] Argüelles, Schneider, Yuan, JHEP 06 (2019) 030
.. [4] Dembinski and Abdelmotteleb, https://doi.org/10.48550/arXiv.2206.12346
.. [5] Baker and Cousins, NIM 221 (1984) 437-442
.. [6] Langenbruch, Eur.Phys.J.C 82 (2022) 5, 393
"""
__slots__ = "_model_data", "_model_xe", "_xe_shape", "_impl", "_model_len"
_model_data: List[
Union[
Tuple[NDArray, NDArray],
Tuple[Model, float],
]
]
_model_xe: np.ndarray
_xe_shape: Union[Tuple[int], Tuple[int, ...]]
def __init__(
self,
n: ArrayLike,
xe: Union[ArrayLike, Sequence[ArrayLike]],
model_or_template: Collection[Union[Model, ArrayLike]],
*,
name: Optional[Sequence[str]] = None,
verbose: int = 0,
method: str = "da",
):
"""
Initialize cost function with data and model.
Parameters
----------
n : array-like
Histogram counts. If this is an array with dimension D+1, where D is the
number of histogram axes, then the last dimension must have two elements and
is interpreted as pairs of sum of weights and sum of weights squared.
xe : array-like or collection of array-like
Bin edge locations, must be len(n) + 1, where n is the number of bins. If
the histogram has more than one axis, xe must be a collection of the bin
edge locations along each axis.
model_or_template : collection of array-like or callable
Collection of models or arrays. An array represent the histogram counts of a
template. The template histograms must use the same axes as the data
histogram. If the counts are represented by an array with dimension D+1,
where D is the number of histogram axes, then the last dimension must have
two elements and is interpreted as pairs of sum of weights and sum of
weights squared. Callables must return the model cdf evaluated as xe.
name : sequence of str or None, optional
Optional name for the yield of each template and the parameter of each model
(in order). Must have the same length as there are templates and model
parameters in templates_or_model. Default is None.
verbose : int, optional
Verbosity level. 0: is no output (default). 1: print current args and
negative log-likelihood value.
method : {"jsc", "asy", "da"}, optional
Which method to use. "jsc": Conway's method [2]_. "asy": ASY method [3]_.
"da": DA method [4]_. Default is "da", which to current knowledge offers the
best overall performance. The default may change in the future, so please
set this parameter explicitly in code that has to be stable. For all methods
except the "asy" method, the minimum value is chi-square distributed.
"""
M = len(model_or_template)
if M < 1:
raise ValueError("at least one template or model is required")
shape = _shape_from_xe(xe)
ndim = len(shape)
npar = 0
annotated: Dict[str, Optional[Tuple[float, float]]] = {}
self._model_data = []
for i, t in enumerate(model_or_template):
if isinstance(t, Collection):
tt = _norm(t)
if tt.ndim > ndim:
# template is weighted
if tt.ndim != ndim + 1 or tt.shape[:-1] != shape:
raise ValueError("shapes of n and templates do not match")
t1 = tt[..., 0].copy()
t2 = tt[..., 1].copy()
else:
if tt.ndim != ndim or tt.shape != shape:
raise ValueError("shapes of n and templates do not match")
t1 = tt.copy()
t2 = tt.copy()
# normalize to unity
f = 1 / np.sum(t1)
t1 *= f
t2 *= f**2
self._model_data.append((t1, t2))
annotated[f"x{i}"] = (0.0, np.inf)
elif isinstance(t, Model):
ann = _model_parameters(t, None)
npar = len(ann)
self._model_data.append((t, npar))
for k in ann:
annotated[f"x{i}_{k}"] = ann[k]
else:
raise ValueError(
"model_or_template must be a collection of array-likes "
"and/or Model types"
)
if name is not None:
if len(annotated) != len(name):
raise ValueError(
"number of names must match number of templates and "
"model parameters"
)
annotated = {new: annotated[old] for (old, new) in zip(annotated, name)}
known_methods = {
"jsc": template_chi2_jsc,
"asy": template_nll_asy,
"hpd": template_chi2_da,
"da": template_chi2_da,
}
try:
self._impl = known_methods[method]
except KeyError:
raise ValueError(
f"method {method} is not understood, allowed values: {known_methods}"
)
if method == "hpd":
warnings.warn(
"key 'hpd' is deprecated, please use 'da' instead",
category=FutureWarning,
stacklevel=2,
)
super().__init__(annotated, n, xe, verbose)
if self._ndim == 1:
self._xe_shape = (len(self.xe),)
self._model_xe = _norm(self.xe)
else:
self._xe_shape = tuple(len(xei) for xei in self.xe)
self._model_xe = np.vstack(
[x.flatten() for x in np.meshgrid(*self.xe, indexing="ij")]
)
self._model_len = np.prod(self._xe_shape)
def _pred(self, args: Sequence[float]) -> Tuple[NDArray, NDArray]:
mu: NDArray = 0 # type:ignore
mu_var: NDArray = 0 # type:ignore
i = 0
for t1, t2 in self._model_data:
if isinstance(t1, np.ndarray) and isinstance(t2, np.ndarray):
a = args[i]
mu += a * t1
mu_var += a**2 * t2
i += 1
elif isinstance(t1, Model) and isinstance(t2, int):
d = t1(self._model_xe, *args[i : i + t2])
d = _normalize_output(d, "model", self._model_len)
if self._ndim > 1:
d = d.reshape(self._xe_shape)
for j in range(self._ndim):
d = np.diff(d, axis=j)
# differences can come out negative due to round-off error in
# subtraction, we set negative values to zero
d[d < 0] = 0
mu += d
mu_var += np.ones_like(mu) * 1e-300
i += t2
else: # never arrive here
assert False # pragma: no cover
return mu, mu_var
def _value(self, args: Sequence[float]) -> float:
mu, mu_var = self._pred(args)
n, mu, mu_var = self._transformed2(mu, mu_var)
ma = mu > 0
return self._impl(n[ma].reshape(-1), mu[ma].reshape(-1), mu_var[ma].reshape(-1))
def _grad(self, args: Sequence[float]) -> NDArray:
raise NotImplementedError # pragma: no cover
def _has_grad(self) -> bool:
return False
def _errordef(self) -> float:
return NEGATIVE_LOG_LIKELIHOOD if self._impl is template_nll_asy else CHISQUARE
def prediction(self, args: Sequence[float]) -> Tuple[NDArray, NDArray]:
"""
Return the fitted template and its standard deviation.
This returns the prediction from the templates, the sum over the products of the
template yields with the normalized templates. The standard deviation is
returned as the second argument, this is the estimated uncertainty of the fitted
template alone. It is obtained via error propagation, taking the statistical
uncertainty in the template into account, but regarding the yields as parameters
without uncertainty.
Parameters
----------
args : array-like
Parameter values.
Returns
-------
y, yerr : NDArray, NDArray
Template prediction and its standard deviation, based on the statistical
uncertainty of the template only.
"""
mu, mu_var = self._pred(args)
return mu, np.sqrt(mu_var)
def _visualize(self, args: Sequence[float]) -> None:
from matplotlib import pyplot as plt
n, ne = self._n_err()
mu, mue = self.prediction(args) # type: ignore
# see implementation notes in BinnedCost.visualize
if self._ndim > 1:
n = n.reshape(-1)
ne = ne.reshape(-1)
mu = mu.reshape(-1)
mue = mue.reshape(-1)
xe = np.arange(len(n) + 1) - 0.5
cx = np.arange(len(n)).astype(float)
else:
xe = self.xe
cx = 0.5 * (xe[1:] + xe[:-1])
plt.errorbar(cx, n, ne, fmt="ok")
# need fill=True and fill=False so that bins with mue=0 show up
for fill in (False, True):
plt.stairs(mu + mue, xe, baseline=mu - mue, fill=fill, color="C0")
def _pulls(self, args: Sequence[float]) -> NDArray:
mu, mue = self.prediction(args)
n, ne = self._n_err()
return (n - mu) / (mue**2 + ne**2) ** 0.5
class BinnedNLL(BinnedCostWithModel):
"""
Binned negative log-likelihood.
Use this if only the shape of the fitted PDF is of interest and the data is binned.
This cost function works with normal and weighted histograms. The histogram can be
one- or multi-dimensional.
The cost function has a minimum value that is asymptotically chi2-distributed. It is
constructed from the log-likelihood assuming a multivariate-normal distribution and
using the saturated model as a reference, see :func:`multinomial_chi2` for details.
When this class is used with weighted data, we use the Bohm-Zech transform for
Poisson-distributed data and the :func:`poisson_chi2` cost function, because
:func:`multinomial_chi2` yields biased results for weighted data. The
reasoning for this choice is that :func:`multinomial_chi2` and :func:`poisson_chi2`
yield the same result for a model which predicts probabilities and expected counts
are computed by multiplying the probability with the total number of counts. Thus we
can derive :func:`multinomial_chi2` as a special case of :func:`poisson_chi2` in
case of unweighted data, but this mathematical equivalence is gone when data are
weighted. The correct cost function is then :func:`poisson_chi2`.
"""
__slots__ = ("_chi2",)
@property
def cdf(self):
"""Get cumulative density function."""
return self._model
def __init__(
self,
n: ArrayLike,
xe: Union[ArrayLike, Sequence[ArrayLike]],
cdf: Model,
*,
verbose: int = 0,
grad: Optional[ModelGradient] = None,
use_pdf: str = "",
name: Optional[Sequence[str]] = None,
):
"""
Initialize cost function with data and model.
Parameters
----------
n : array-like
Histogram counts. If this is an array with dimension D+1, where D is the
number of histogram axes, then the last dimension must have two elements
and is interpreted as pairs of sum of weights and sum of weights squared.
xe : array-like or collection of array-like
Bin edge locations, must be len(n) + 1, where n is the number of bins.
If the histogram has more than one axis, xe must be a collection of the
bin edge locations along each axis.
cdf : callable
Cumulative density function of the form f(xe, par0, par1, ..., parN),
where xe is a bin edge and par0, ... are model parameters. The corresponding
density must be normalized to unity over the space covered by the histogram.
If the model is multivariate, xe must be an array-like with shape (D, N),
where D is the dimension and N is the number of points where the model is
evaluated.
verbose : int, optional
Verbosity level. 0: is no output (default).
1: print current args and negative log-likelihood value.
grad: callable or None, optional
Optionally pass the gradient of the cdf (Default is None). Has the same
calling signature like the cdf, but must return an array with the shape (K,
N), where N is the number of data points and K is the number of parameters.
The gradient can be used by Minuit to improve or speed up convergence.
use_pdf: str, optional
Either "", "numerical", or "approximate" (Default is ""). If the model cdf
is not available, but the model pdf is, this option can be set to
"numerical" or "approximate" to compute the integral of the pdf over the bin
patch. The option "numerical" uses numerical integration, which is accurate
but computationally expensive and only supported for 1D histograms. The
option "approximate" uses the zero-order approximation of evaluating the pdf
at the bin center, multiplied with the bin area. This is fast and works in
higher dimensions, but can lead to biased results if the curvature of the
pdf inside the bin is significant.
name : sequence of str or None, optional
Optional names for each parameter of the model (in order). Must have the
same length as there are model parameters. Default is None.
"""
super().__init__(n, xe, cdf, verbose, grad, use_pdf, name)
if self._bohm_zech_s is None:
self._chi2 = multinomial_chi2
else:
self._chi2 = poisson_chi2
def _pred(self, args: Sequence[float]) -> NDArray:
# must return array of full length, mask not applied yet
p = super()._pred(args)
# normalise probability of remaining bins
ma = self.mask
if ma is not None:
p /= np.sum(p[ma])
# scale probabilities with total number of entries of unmasked bins in histogram
return p * np.sum(self._counts())
def _value(self, args: Sequence[float]) -> float:
mu = self._pred(args)
n, mu = self._transformed(mu)
return self._chi2(n.reshape(-1), mu.reshape(-1))
def _grad(self, args: Sequence[float]) -> NDArray:
# pg and p must be arrays of full length, mask not applied yet
pg = super()._pred_grad(args)
p = super()._pred(args)
ma = self.mask
# normalise probability of remaining bins
if ma is not None:
psum = np.sum(p[ma])
pg = pg / psum - p * np.sum(pg[:, ma]) / psum**2
p /= psum
# scale probabilities with total number of entries of unmasked bins in histogram
n = self._counts()
ntot = np.sum(n)
mu = p * ntot
gmu = pg * ntot
ma = self.mask
if ma is not None:
mu = mu[ma]
gmu = gmu[:, ma]
n = n.reshape(-1)
mu = mu.reshape(-1)
gmu = gmu.reshape(gmu.shape[0], -1)
s = self._bohm_zech_s
if s is None:
return _multinomial_chi2_grad(n, mu, gmu)
# use original n and mu because Bohm-Zech scale factor cancels
s = s.reshape(-1)
return _poisson_chi2_grad(n, mu, s * gmu)
class ExtendedBinnedNLL(BinnedCostWithModel):
"""
Binned extended negative log-likelihood.
Use this if shape and normalization of the fitted PDF are of interest and the data
is binned. This cost function works with normal and weighted histograms. The
histogram can be one- or multi-dimensional.
The cost function works for both weighted data. The cost function assumes that
the weights are independent of the data. This is not the case for sWeights, and
the uncertaintes for results obtained with sWeights will only be approximately
correct, see C. Langenbruch, Eur.Phys.J.C 82 (2022) 5, 393.
The cost function has a minimum value that is asymptotically chi2-distributed. It is
constructed from the log-likelihood assuming a poisson distribution and using the
saturated model as a reference.
"""
__slots__ = ()
@property
def scaled_cdf(self):
"""Get integrated density model."""
return self._model
def __init__(
self,
n: ArrayLike,
xe: Union[ArrayLike, Sequence[ArrayLike]],
scaled_cdf: Model,
*,
verbose: int = 0,
grad: Optional[ModelGradient] = None,
use_pdf: str = "",
name: Optional[Sequence[str]] = None,
):
"""
Initialize cost function with data and model.
Parameters
----------
n : array-like
Histogram counts. If this is an array with dimension D+1, where D is the
number of histogram axes, then the last dimension must have two elements
and is interpreted as pairs of sum of weights and sum of weights squared.
xe : array-like or collection of array-like
Bin edge locations, must be len(n) + 1, where n is the number of bins.
If the histogram has more than one axis, xe must be a collection of the
bin edge locations along each axis.
scaled_cdf : callable
Scaled Cumulative density function of the form f(xe, par0, [par1, ...]),
where xe is a bin edge and par0, ... are model parameters. If the model is
multivariate, xe must be an array-like with shape (D, N), where D is the
dimension and N is the number of points where the model is evaluated.
verbose : int, optional
Verbosity level. 0: is no output (default). 1: print current args and
negative log-likelihood value.
grad: callable or None, optional
Optionally pass the gradient of the cdf (Default is None). Has the same
calling signature like the cdf, but must return an array with the shape (K,
N), where N is the number of data points and K is the number of parameters.
The gradient can be used by Minuit to improve or speed up convergence.
use_pdf: str, optional
Either "", "numerical", or "approximate". If the model cdf is not available,
but the model pdf is, this option can be set to "numerical" or "approximate"
to compute the integral of the pdf over the bin patch. The option
"numerical" uses numerical integration, which is accurate but
computationally expensive and only supported for 1D histograms. The option
"approximate" uses the zero-order approximation of evaluating the pdf at the
bin center, multiplied with the bin area. This is fast and works in higher
dimensions, but can lead to biased results if the curvature of the pdf
inside the bin is significant.
name : sequence of str or None, optional
Optional names for each parameter of the model (in order). Must have the
same length as there are model parameters. Default is None.
"""
super().__init__(n, xe, scaled_cdf, verbose, grad, use_pdf, name)
def _value(self, args: Sequence[float]) -> float:
mu = self._pred(args)
n, mu = self._transformed(mu)
return poisson_chi2(n.reshape(-1), mu.reshape(-1))
def _grad(self, args: Sequence[float]) -> NDArray:
mu = self._pred(args)
gmu = self._pred_grad(args)
ma = self.mask
if ma is not None:
mu = mu[ma]
gmu = gmu[:, ma]
mu = mu.reshape(-1)
gmu = gmu.reshape(gmu.shape[0], -1)
n = self._counts().reshape(-1)
s = self._bohm_zech_s
if s is None:
return _poisson_chi2_grad(n, mu, gmu)
# use original n and mu because Bohm-Zech scale factor cancels
s = s.reshape(-1)
return _poisson_chi2_grad(n, mu, s * gmu)
class LeastSquares(MaskedCostWithPulls):
"""
Least-squares cost function (aka chisquare function).
Use this if you have data of the form (x, y +/- yerror), where x can be
one-dimensional or multi-dimensional, but y is always one-dimensional. See
:meth:`__init__` for details on how to use a multivariate model.
"""
__slots__ = "_loss", "_cost", "_cost_grad", "_model", "_model_grad", "_ndim"
_loss: Union[str, LossFunction]
_cost: Callable[[ArrayLike, ArrayLike, ArrayLike], float]
_cost_grad: Optional[Callable[[NDArray, NDArray, NDArray, NDArray], NDArray]]
_model: Model
_model_grad: Optional[ModelGradient]
_ndim: int
@property
def x(self):
"""Get explanatory variables."""
if self._ndim == 1:
return self.data[:, 0]
return self.data.T[: self._ndim]
@x.setter
def x(self, value):
if self._ndim == 1:
self.data[:, 0] = _norm(value)
else:
self.data[:, : self._ndim] = _norm(value).T
self._update_cache()
@property
def y(self):
"""Get samples."""
return self.data[:, self._ndim]
@y.setter
def y(self, value):
self.data[:, self._ndim] = _norm(value)
self._update_cache()
@property
def yerror(self):
"""Get sample uncertainties."""
return self.data[:, self._ndim + 1]
@yerror.setter
def yerror(self, value):
self.data[:, self._ndim + 1] = _norm(value)
self._update_cache()
@property
def model(self):
"""Get model of the form y = f(x, par0, [par1, ...])."""
if len(self._parameters) == 1:
return lambda x, *args: (
self._model(x, args) if len(args) > 1 else self._model(x, *args)
)
else:
return self._model
@property
def loss(self):
"""Get loss function."""
return self._loss
@loss.setter
def loss(self, loss: Union[str, LossFunction]):
self._loss = loss
if isinstance(loss, str):
if loss == "linear":
self._cost = chi2
self._cost_grad = _chi2_grad
elif loss == "soft_l1":
self._cost = _soft_l1_cost # type: ignore
self._cost_grad = _soft_l1_cost_grad
else:
raise ValueError(f"unknown loss {loss!r}")
elif isinstance(loss, LossFunction):
self._cost = lambda y, ye, ym: np.sum(
loss(_z_squared(y, ye, ym)) # type:ignore
)
self._cost_grad = None
else:
raise ValueError("loss must be str or LossFunction")
def __init__(
self,
x: ArrayLike,
y: ArrayLike,
yerror: ArrayLike,
model: Model,
*,
loss: Union[str, LossFunction] = "linear",
verbose: int = 0,
grad: Optional[ModelGradient] = None,
name: Optional[Sequence[str]] = None,
):
"""
Initialize cost function with data and model.
Parameters
----------
x : array-like
Locations where the model is evaluated. If the model is multivariate, x must
have shape (D, N), where D is the number of dimensions and N the number of
data points.
y : array-like
Observed values. Must have the same length as x.
yerror : array-like or float
Estimated uncertainty of observed values. Must have same shape as y or be a
scalar, which is then broadcasted to same shape as y.
model : callable
Function of the form f(x, par0, [par1, ...]) whose output is compared to
observed values, where x is the location and par0, ... are model parameters.
If the model is multivariate, x has shape (D, N), where D is the number
of dimensions and N the number of data points.
loss : str or callable, optional
The loss function can be modified to make the fit robust against outliers,
see scipy.optimize.least_squares for details. Only "linear" (default) and
"soft_l1" are currently implemented, but users can pass any loss function as
this argument. It should be a monotonic, twice differentiable function,
which accepts the squared residual and returns a modified squared residual.
verbose : int, optional
Verbosity level. 0: is no output (default). 1: print current args and
negative log-likelihood value.
Notes
-----
Alternative loss functions make the fit more robust against outliers by
weakening the pull of outliers. The mechanical analog of a least-squares fit is
a system with attractive forces. The points pull the model towards them with a
force whose potential is given by :math:`rho(z)` for a squared-offset :math:`z`.
The plot shows the standard potential in comparison with the weaker soft-l1
potential, in which outliers act with a constant force independent of their
distance.
.. plot:: plots/loss.py
"""
x = _norm(x)
y = _norm(y)
assert x.ndim >= 1 # guaranteed by _norm
self._ndim = x.shape[0] if x.ndim > 1 else 1
self._model = model
self._model_grad = grad
self.loss = loss
x = np.atleast_2d(x)
data = np.column_stack(np.broadcast_arrays(*x, y, yerror))
super().__init__(_model_parameters(model, name), data, verbose)
def _ndata(self):
return len(self._masked)
def visualize(
self, args: ArrayLike, model_points: Union[int, Sequence[float]] = 0
) -> Tuple[Tuple[NDArray, NDArray, NDArray], Tuple[NDArray, NDArray]]:
"""
Visualize data and model agreement (requires matplotlib).
The visualization is drawn with matplotlib.pyplot into the current axes.
Parameters
----------
args : array-like
Parameter values.
model_points : int or array-like, optional
How many points to use to draw the model. Default is 0, in this case
an smart sampling algorithm selects the number of points. If array-like,
it is interpreted as the point locations.
"""
from matplotlib import pyplot as plt
if self._ndim > 1:
raise ValueError("visualize is not implemented for multi-dimensional data")
x, y, ye = self._masked.T
plt.errorbar(x, y, ye, fmt="ok")
if isinstance(model_points, Iterable):
xm = np.array(model_points)
ym = self.model(xm, *args)
elif model_points > 0:
if _detect_log_spacing(x):
xm = np.geomspace(x[0], x[-1], model_points)
else:
xm = np.linspace(x[0], x[-1], model_points)
ym = self.model(xm, *args)
else:
xm, ym = _smart_sampling(lambda x: self.model(x, *args), x[0], x[-1])
plt.plot(xm, ym)
return (x, y, ye), (xm, ym)
def prediction(self, args: Sequence[float]) -> NDArray:
"""
Return the prediction from the fitted model.
Parameters
----------
args : array-like
Parameter values.
Returns
-------
NDArray
Model prediction for each bin.
"""
return self.model(self.x, *args)
def _pulls(self, args: Sequence[float]) -> NDArray:
y = self.y.copy()
ye = self.yerror.copy()
ym = self.prediction(args)
if self.mask is not None:
ma = ~self.mask
y[ma] = np.nan
ye[ma] = np.nan
return (y - ym) / ye
def _pred(self, args: Sequence[float]) -> NDArray:
x = self._masked.T[0] if self._ndim == 1 else self._masked.T[: self._ndim]
ym = self._model(x, *args)
return _normalize_output(ym, "model", self._ndata())
def _pred_grad(self, args: Sequence[float]) -> NDArray:
if self._model_grad is None:
raise ValueError("no gradient available") # pragma: no cover
x = self._masked.T[0] if self._ndim == 1 else self._masked.T[: self._ndim]
ymg = self._model_grad(x, *args)
return _normalize_output(ymg, "model gradient", self.npar, self._ndata())
def _value(self, args: Sequence[float]) -> float:
y, ye = self._masked.T[self._ndim :]
ym = self._pred(args)
return self._cost(y, ye, ym)
def _grad(self, args: Sequence[float]) -> NDArray:
if self._cost_grad is None:
raise ValueError("no cost gradient available") # pragma: no cover
y, ye = self._masked.T[self._ndim :]
ym = self._pred(args)
ymg = self._pred_grad(args)
return self._cost_grad(y, ye, ym, ymg)
def _has_grad(self) -> bool:
return self._model_grad is not None and self._cost_grad is not None
class NormalConstraint(Cost):
"""
Gaussian penalty for one or several parameters.
The Gaussian penalty acts like a pseudo-measurement of the parameter itself, based
on a (multi-variate) normal distribution. Penalties can be set for one or several
parameters at once (which is more efficient). When several parameter are
constrained, one can specify the full covariance matrix of the parameters.
Notes
-----
It is sometimes necessary to add a weak penalty on a parameter to avoid
instabilities in the fit. A typical example in high-energy physics is the fit of a
signal peak above some background. If the amplitude of the peak vanishes, the shape
parameters of the peak become unconstrained and the fit becomes unstable. This can
be avoided by adding weak (large uncertainty) penalty on the shape parameters whose
pull is negligible if the peak amplitude is non-zero.
This class can also be used to approximately include external measurements of some
parameters, if the original cost function is not available or too costly to compute.
If the external measurement was performed in the asymptotic limit with a large
sample, a Gaussian penalty is an accurate statistical representation of the external
result.
"""
__slots__ = "_expected", "_cov", "_covinv"
def __init__(
self,
args: Union[str, Iterable[str]],
value: ArrayLike,
error: ArrayLike,
):
"""
Initialize the normal constraint with expected value(s) and error(s).
Parameters
----------
args : str or sequence of str
Parameter name(s).
value : float or array-like
Expected value(s). Must have same length as `args`.
error : float or array-like
Expected error(s). If 1D, must have same length as `args`. If 2D, must be
the covariance matrix of the parameters.
"""
tp_args = (args,) if isinstance(args, str) else tuple(args)
nargs = len(tp_args)
self._expected = _norm(value)
if self._expected.ndim > 1:
raise ValueError("value must be a scalar or one-dimensional")
# args can be a vector of values, in this case we have nargs == 1
if nargs > 1 and len(self._expected) != nargs:
raise ValueError("size of value does not match size of args")
self._cov = _norm(error)
if len(self._cov) != len(self._expected):
raise ValueError("size of error does not match size of value")
if self._cov.ndim < 2:
self._cov **= 2
elif self._cov.ndim == 2:
if not is_positive_definite(self._cov):
raise ValueError("covariance matrix is not positive definite")
else:
raise ValueError("covariance matrix cannot have more than two dimensions")
self._covinv = _covinv(self._cov)
super().__init__({k: None for k in tp_args}, False)
@property
def covariance(self):
"""
Get expected covariance of parameters.
Can be 1D (diagonal of covariance matrix) or 2D (full covariance matrix).
"""
return self._cov
@covariance.setter
def covariance(self, value):
value = np.asarray(value)
if value.ndim == 2 and not is_positive_definite(value):
raise ValueError("covariance matrix is not positive definite")
self._cov[:] = value
self._covinv = _covinv(self._cov)
@property
def value(self):
"""Get expected parameter values."""
return self._expected
@value.setter
def value(self, value):
self._expected[:] = value
def _value(self, args: Sequence[float]) -> float:
delta = args - self._expected
if self._covinv.ndim < 2:
return np.sum(delta**2 * self._covinv)
return np.einsum("i,ij,j", delta, self._covinv, delta)
def _grad(self, args: Sequence[float]) -> NDArray:
delta = args - self._expected
if self._covinv.ndim < 2:
return 2 * delta * self._covinv
return 2 * self._covinv @ delta
def _has_grad(self) -> bool:
return True
def _ndata(self):
return len(self._expected)
def visualize(self, args: ArrayLike):
"""
Visualize data and model agreement (requires matplotlib).
The visualization is drawn with matplotlib.pyplot into the current axes.
Parameters
----------
args : array-like
Parameter values.
"""
from matplotlib import pyplot as plt
args = np.atleast_1d(args)
par = self._parameters
val = self.value
cov = self.covariance
if cov.ndim == 2:
cov = np.diag(cov)
err = np.sqrt(cov)
n = len(par)
i = 0
max_pull = 0
for v, e, a in zip(val, err, args):
pull = (a - v) / e
max_pull = max(abs(pull), max_pull)
plt.errorbar(pull, -i, 0, 1, fmt="o", color="C0")
i += 1
plt.axvline(0, color="k")
plt.xlim(-max_pull - 1.1, max_pull + 1.1)
yaxis = plt.gca().yaxis
yaxis.set_ticks(-np.arange(n))
yaxis.set_ticklabels(par)
plt.ylim(-n + 0.5, 0.5)
def _norm(value: ArrayLike) -> NDArray:
value = np.atleast_1d(value)
dtype = value.dtype
if dtype.kind != "f":
value = value.astype(np.float64)
return value
def _covinv(array):
return np.linalg.inv(array) if array.ndim == 2 else 1.0 / array
def _normalize_output(x, kind, *shape, msg=None):
if not isinstance(x, np.ndarray):
if msg is None:
msg = f"{kind} should return numpy array, but returns {type(x)}"
else:
msg = f"{kind} should return numpy array {msg}, but returns {type(x)}"
warnings.warn(msg, PerformanceWarning)
x = np.array(x)
if x.dtype.kind != "f":
return x.astype(float)
if x.ndim < len(shape):
return x.reshape(*shape)
elif x.shape != shape:
# NumPy 2 uses a numpy int here
pretty_shape = tuple(int(i) for i in shape)
msg = (
f"output of {kind} has shape {x.shape!r}, but {pretty_shape!r} is required"
)
raise ValueError(msg)
return x
def _shape_from_xe(xe):
if isinstance(xe[0], Iterable):
return tuple(len(xei) - 1 for xei in xe)
return (len(xe) - 1,)
def _model_parameters(model, name):
# strip first argument from model
ann = describe(model, annotations=True)
args = iter(ann)
next(args)
params = {k: ann[k] for k in args}
if name:
if len(params) == len(name):
params = {n: att for (n, att) in zip(name, params.values())}
elif len(params) > 0:
raise ValueError("length of name does not match number of model parameters")
else:
params = {n: None for n in name}
return params
_deprecated_content = {
"BarlowBeestonLite": ("Template", Template),
"barlow_beeston_lite_chi2_jsc": ("template_chi2_jsc", template_chi2_jsc),
"barlow_beeston_lite_chi2_hpd": ("template_chi2_da", template_chi2_da),
"multinominal_chi2": ("multinomial_chi2", multinomial_chi2),
}
def __getattr__(name: str) -> Any:
if name in _deprecated_content:
new_name, obj = _deprecated_content[name]
warnings.warn(
f"{name} was renamed to {new_name}, please import {new_name} instead",
FutureWarning,
stacklevel=2,
)
return obj
raise AttributeError
|