1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
CC
CC various special functions, taken from netlib's specfun package
CC
double precision function erf_xx(arg,jint)
C------------------------------------------------------------------
C
C This packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x)
C for a real argument x. It contains three FUNCTION type
C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX),
C and one SUBROUTINE type subprogram, ERF_XX. The calling
C statements for the primary entries are:
C
C Y=ERF(X) (or Y=DERF(X)),
C
C Y=ERFC(X) (or Y=DERFC(X)),
C and
C Y=ERFCX(X) (or Y=DERFCX(X)).
C
C The routine ERF_XX is intended for internal packet use only,
C all computations within the packet being concentrated in this
C routine. The function subprograms invoke ERF_XX with the
C statement
C
C CALL ERF_XX(ARG,RESULT,JINT)
C
C where the parameter usage is as follows
C
C Function Parameters for ERF_XX
C call ARG Result JINT
C
C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0
C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1
C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2
C
C The main computation evaluates near-minimax approximations
C from "Rational Chebyshev approximations for the error function"
C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
C transportable program uses rational functions that theoretically
C approximate erf(x) and erfc(x) to at least 18 significant
C decimal digits. The accuracy achieved depends on the arithmetic
C system, the compiler, the intrinsic functions, and proper
C selection of the machine-dependent constants.
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C XMIN = the smallest positive floating-point number.
C XINF = the largest positive finite floating-point number.
C XNEG = the largest negative argument acceptable to ERFCX;
C the negative of the solution to the equation
C 2*exp(x*x) = XINF.
C XSMALL = argument below which erf(x) may be represented by
C 2*x/sqrt(pi) and above which x*x will not underflow.
C A conservative value is the largest machine number X
C such that 1.0 + X = 1.0 to machine precision.
C XBIG = largest argument acceptable to ERFC; solution to
C the equation: W(x) * (1-0.5/x**2) = XMIN, where
C W(x) = exp(-x*x)/[x*sqrt(pi)].
C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to
C machine precision. A conservative value is
C 1/[2*sqrt(XSMALL)]
C XMAX = largest acceptable argument to ERFCX; the minimum
C of XINF and 1/[sqrt(pi)*XMIN].
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C The program returns ERFC = 0 for ARG .GE. XBIG;
C
C ERFCX = XINF for ARG .LT. XNEG;
C and
C ERFCX = 0 for ARG .GE. XMAX.
C
C Intrinsic functions required are:
C
C ABS, INT, EXP
C
C
C Author: W. J. Cody
C Mathematics and Computer Science Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C Latest modification: March 19, 1990
C
c------------------------------------------------------------------
integer i,jint
double precision arg,del,four,half,one, y, ysq, sixteen
double precision sqrpi,two,thresh,x,xbig,xden,xhuge
double precision xinf,xmax,xneg,xnum,xsmall, zero
double precision a(5),b(4),c(9),d(8),p(6),q(5)
c------------------------------------------------------------------
c mathematical constants
c------------------------------------------------------------------
parameter(four=4.d0,
parameter(sqrpi=5.6418958354775628695d-1,thresh=0.46875d0)
parameter(sixten=16.0d0)
c------------------------------------------------------------------
c machine-dependent constants
c------------------------------------------------------------------
parameter(xinf =1.d50, xneg=-22.d0, xsmall=1.d-16)
parameter(xbig =22.d0, xhuge=6.d6, xmax=xinf)
c------------------------------------------------------------------
c coefficients for approximation to erf in first interval
c------------------------------------------------------------------
data a/3.16112374387056560d00,1.13864154151050156d02,
1 3.77485237685302021d02,3.20937758913846947d03,
2 1.85777706184603153d-1/
data b/2.36012909523441209d01,2.44024637934444173d02,
1 1.28261652607737228d03,2.84423683343917062d03/
c------------------------------------------------------------------
c coefficients for approximation to erfc in second interval
c------------------------------------------------------------------
data c/5.64188496988670089d-1,8.88314979438837594d0,
1 6.61191906371416295d01,2.98635138197400131d02,
2 8.81952221241769090d02,1.71204761263407058d03,
3 2.05107837782607147d03,1.23033935479799725d03,
4 2.15311535474403846d-8/
data d/1.57449261107098347d01,1.17693950891312499d02,
1 5.37181101862009858d02,1.62138957456669019d03,
2 3.29079923573345963d03,4.36261909014324716d03,
3 3.43936767414372164d03,1.23033935480374942d03/
c------------------------------------------------------------------
c coefficients for approximation to erfc in third interval
c------------------------------------------------------------------
data p/3.05326634961232344d-1,3.60344899949804439d-1,
1 1.25781726111229246d-1,1.60837851487422766d-2,
2 6.58749161529837803d-4,1.63153871373020978d-2/
data q/2.56852019228982242d00,1.87295284992346047d00,
1 5.27905102951428412d-1,6.05183413124413191d-2,
2 2.33520497626869185d-3/
c------------------------------------------------------------------
x = arg
y = abs(x)
if (y .le. thresh) then
c------------------------------------------------------------------
c evaluate erf for |x| <= 0.46875
c------------------------------------------------------------------
ysq = zero
if (y .gt. xsmall) ysq = y * y
xnum = a(5)*ysq
xden = ysq
do 20 i = 1, 3
xnum = (xnum + a(i)) * ysq
xden = (xden + b(i)) * ysq
20 continue
erf_xx = x * (xnum + a(4)) / (xden + b(4))
if (jint .ne. 0) erf_xx = one - erf_xx
if (jint .eq. 2) erf_xx = exp(ysq) * erf_xx
go to 800
c------------------------------------------------------------------
c evaluate erfc for 0.46875 <= |x| <= 4.0
c------------------------------------------------------------------
else if (y .le. four) then
xnum = c(9)*y
xden = y
do 120 i = 1, 7
xnum = (xnum + c(i)) * y
xden = (xden + d(i)) * y
120 continue
erf_xx = (xnum + c(8)) / (xden + d(8))
if (jint .ne. 2) then
ysq = int(y*sixten)/sixten
del = (y-ysq)*(y+ysq)
erf_xx = exp(-ysq*ysq) * exp(-del) * erf_xx
end if
c------------------------------------------------------------------
c evaluate erfc for |x| > 4.0
c------------------------------------------------------------------
else
erf_xx = zero
if (y .ge. xbig) then
if ((jint .ne. 2) .or. (y .ge. xmax)) go to 300
if (y .ge. xhuge) then
erf_xx = sqrpi / y
go to 300
end if
end if
ysq = one / (y * y)
xnum = p(6)*ysq
xden = ysq
do 240 i = 1, 4
xnum = (xnum + p(i)) * ysq
xden = (xden + q(i)) * ysq
240 continue
erf_xx = ysq *(xnum + p(5)) / (xden + q(5))
erf_xx = (sqrpi - erf_xx) / y
if (jint .ne. 2) then
ysq = int(y*sixten)/sixten
del = (y-ysq)*(y+ysq)
erf_xx = exp(-ysq*ysq) * exp(-del) * erf_xx
end if
end if
c------------------------------------------------------------------
c fix up for negative argument, erf, etc.
c------------------------------------------------------------------
300 if (jint .eq. 0) then
erf_xx = (half - erf_xx) + half
if (x .lt. zero) erf_xx = -erf_xx
else if (jint .eq. 1) then
if (x .lt. zero) erf_xx = two - erf_xx
else
if (x .lt. zero) then
if (x .lt. xneg) then
erf_xx = xinf
else
ysq = int(x*sixten)/sixten
del = (x-ysq)*(x+ysq)
y = exp(ysq*ysq) * exp(del)
erf_xx = (y+y) - erf_xx
end if
end if
end if
800 return
end
DOUBLE PRECISION FUNCTION DGAMMA(X)
C----------------------------------------------------------------------
C
C This routine calculates the GAMMA function for a real argument X.
C Computation is based on an algorithm outlined in reference 1.
C The program uses rational functions that approximate the GAMMA
C function to at least 20 significant decimal digits. Coefficients
C for the approximation over the interval (1,2) are unpublished.
C Those for the approximation for X .GE. 12 are from reference 2.
C The accuracy achieved depends on the arithmetic system, the
C compiler, the intrinsic functions, and proper selection of the
C machine-dependent constants.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG - the largest argument for which GAMMA(X) is representable
C in the machine, i.e., the solution to the equation
C GAMMA(XBIG) = beta**maxexp
C XINF - the largest machine representable floating-point number;
C approximately beta**maxexp
C EPS - the smallest positive floating-point number such that
C 1.0+EPS .GT. 1.0
C XMININ - the smallest positive floating-point number such that
C 1/XMININ is machine representable
C
C Approximate values for some important machines are:
C
C beta maxexp XBIG
C
C CRAY-1 (S.P.) 2 8191 966.961
C Cyber 180/855
C under NOS (S.P.) 2 1070 177.803
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 128 35.040
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 1024 171.624
C IBM 3033 (D.P.) 16 63 57.574
C VAX D-Format (D.P.) 2 127 34.844
C VAX G-Format (D.P.) 2 1023 171.489
C
C XINF EPS XMININ
C
C CRAY-1 (S.P.) 5.45E+2465 7.11E-15 1.84E-2466
C Cyber 180/855
C under NOS (S.P.) 1.26E+322 3.55E-15 3.14E-294
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 3.40E+38 1.19E-7 1.18E-38
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.79D+308 2.22D-16 2.23D-308
C IBM 3033 (D.P.) 7.23D+75 2.22D-16 1.39D-76
C VAX D-Format (D.P.) 1.70D+38 1.39D-17 5.88D-39
C VAX G-Format (D.P.) 8.98D+307 1.11D-16 1.12D-308
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C The program returns the value XINF for singularities or
C when overflow would occur. The computation is believed
C to be free of underflow and overflow.
C
C
C Intrinsic functions required are:
C
C INT, DBLE, EXP, LOG, REAL, SIN
C
C
C References: "An Overview of Software Development for Special
C Functions", W. J. Cody, Lecture Notes in Mathematics,
C 506, Numerical Analysis Dundee, 1975, G. A. Watson
C (ed.), Springer Verlag, Berlin, 1976.
C
C Computer Approximations, Hart, Et. Al., Wiley and
C sons, New York, 1968.
C
C Latest modification: October 12, 1989
C
C Authors: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C----------------------------------------------------------------------
INTEGER I,N
LOGICAL PARITY
DOUBLE PRECISION
1 C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
2 TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
DIMENSION C(7),P(8),Q(8)
C----------------------------------------------------------------------
C Mathematical constants
C----------------------------------------------------------------------
DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
1 SQRTPI/0.9189385332046727417803297D0/,
2 PI/3.1415926535897932384626434D0/
C----------------------------------------------------------------------
C Machine dependent parameters
C----------------------------------------------------------------------
DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
1 XINF/1.79D308/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C approximation over (1,2).
C----------------------------------------------------------------------
DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
1 -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
2 8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
3 -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
1 -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
2 2.25381184209801510330112D+4,4.75584627752788110767815D+3,
3 -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
C----------------------------------------------------------------------
C Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
DATA C/-1.910444077728D-03,8.4171387781295D-04,
1 -5.952379913043012D-04,7.93650793500350248D-04,
2 -2.777777777777681622553D-03,8.333333333333333331554247D-02,
3 5.7083835261D-03/
C----------------------------------------------------------------------
C Statement functions for conversion between integer and float
C----------------------------------------------------------------------
CONV(I) = DBLE(I)
PARITY = .FALSE.
FACT = ONE
N = 0
Y = X
IF (Y .LE. ZERO) THEN
C----------------------------------------------------------------------
C Argument is negative
C----------------------------------------------------------------------
Y = -X
Y1 = AINT(Y)
RES = Y - Y1
IF (RES .NE. ZERO) THEN
IF (Y1 .NE. AINT(Y1*HALF)*TWO) PARITY = .TRUE.
FACT = -PI / SIN(PI*RES)
Y = Y + ONE
ELSE
RES = XINF
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Argument is positive
C----------------------------------------------------------------------
IF (Y .LT. EPS) THEN
C----------------------------------------------------------------------
C Argument .LT. EPS
C----------------------------------------------------------------------
IF (Y .GE. XMININ) THEN
RES = ONE / Y
ELSE
RES = XINF
GO TO 900
END IF
ELSE IF (Y .LT. TWELVE) THEN
Y1 = Y
IF (Y .LT. ONE) THEN
C----------------------------------------------------------------------
C 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
Z = Y
Y = Y + ONE
ELSE
C----------------------------------------------------------------------
C 1.0 .LT. argument .LT. 12.0, reduce argument if necessary
C----------------------------------------------------------------------
N = INT(Y) - 1
Y = Y - CONV(N)
Z = Y - ONE
END IF
C----------------------------------------------------------------------
C Evaluate approximation for 1.0 .LT. argument .LT. 2.0
C----------------------------------------------------------------------
XNUM = ZERO
XDEN = ONE
DO 260 I = 1, 8
XNUM = (XNUM + P(I)) * Z
XDEN = XDEN * Z + Q(I)
260 CONTINUE
RES = XNUM / XDEN + ONE
IF (Y1 .LT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
RES = RES / Y1
ELSE IF (Y1 .GT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 2.0 .LT. argument .LT. 12.0
C----------------------------------------------------------------------
DO 290 I = 1, N
RES = RES * Y
Y = Y + ONE
290 CONTINUE
END IF
ELSE
C----------------------------------------------------------------------
C Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
IF (Y .LE. XBIG) THEN
YSQ = Y * Y
SUM = C(7)
DO 350 I = 1, 6
SUM = SUM / YSQ + C(I)
350 CONTINUE
SUM = SUM/Y - Y + SQRTPI
SUM = SUM + (Y-HALF)*LOG(Y)
RES = EXP(SUM)
ELSE
RES = XINF
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Final adjustments and return
C----------------------------------------------------------------------
IF (PARITY) RES = -RES
IF (FACT .NE. ONE) RES = FACT / RES
900 DGAMMA = RES
RETURN
C ---------- Last line of GAMMA ----------
END
DOUBLE PRECISION FUNCTION DLGAMA(X)
C----------------------------------------------------------------------
C
C This routine calculates the LOG(GAMMA) function for a positive real
C argument X. Computation is based on an algorithm outlined in
C references 1 and 2. The program uses rational functions that
C theoretically approximate LOG(GAMMA) to at least 18 significant
C decimal digits. The approximation for X > 12 is from reference
C 3, while approximations for X < 12.0 are similar to those in
C reference 1, but are unpublished. The accuracy achieved depends
C on the arithmetic system, the compiler, the intrinsic functions,
C and proper selection of the machine-dependent constants.
C
C
C*********************************************************************
C*********************************************************************
C
C Explanation of machine-dependent constants
C
C beta - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG - largest argument for which LN(GAMMA(X)) is representable
C in the machine, i.e., the solution to the equation
C LN(GAMMA(XBIG)) = beta**maxexp
C XINF - largest machine representable floating-point number;
C approximately beta**maxexp.
C EPS - The smallest positive floating-point number such that
C 1.0+EPS .GT. 1.0
C FRTBIG - Rough estimate of the fourth root of XBIG
C
C
C Approximate values for some important machines are:
C
C beta maxexp XBIG
C
C CRAY-1 (S.P.) 2 8191 9.62E+2461
C Cyber 180/855
C under NOS (S.P.) 2 1070 1.72E+319
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 128 4.08E+36
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 1024 2.55D+305
C IBM 3033 (D.P.) 16 63 4.29D+73
C VAX D-Format (D.P.) 2 127 2.05D+36
C VAX G-Format (D.P.) 2 1023 1.28D+305
C
C
C XINF EPS FRTBIG
C
C CRAY-1 (S.P.) 5.45E+2465 7.11E-15 3.13E+615
C Cyber 180/855
C under NOS (S.P.) 1.26E+322 3.55E-15 6.44E+79
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 3.40E+38 1.19E-7 1.42E+9
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.79D+308 2.22D-16 2.25D+76
C IBM 3033 (D.P.) 7.23D+75 2.22D-16 2.56D+18
C VAX D-Format (D.P.) 1.70D+38 1.39D-17 1.20D+9
C VAX G-Format (D.P.) 8.98D+307 1.11D-16 1.89D+76
C
C**************************************************************
C**************************************************************
C
C Error returns
C
C The program returns the value XINF for X .LE. 0.0 or when
C overflow would occur. The computation is believed to
C be free of underflow and overflow.
C
C
C Intrinsic functions required are:
C
C LOG
C
C
C References:
C
C 1) W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for
C the Natural Logarithm of the Gamma Function,' Math. Comp. 21,
C 1967, pp. 198-203.
C
C 2) K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May,
C 1969.
C
C 3) Hart, Et. Al., Computer Approximations, Wiley and sons, New
C York, 1968.
C
C
C Authors: W. J. Cody and L. Stoltz
C Argonne National Laboratory
C
C Latest modification: June 16, 1988
C
C----------------------------------------------------------------------
INTEGER I
DOUBLE PRECISION
1 C,CORR,D1,D2,D4,EPS,FRTBIG,FOUR,HALF,ONE,PNT68,P1,P2,P4,
2 Q1,Q2,Q4,RES,SQRTPI,THRHAL,TWELVE,TWO,X,XBIG,XDEN,XINF,
3 XM1,XM2,XM4,XNUM,Y,YSQ,ZERO
DIMENSION C(7),P1(8),P2(8),P4(8),Q1(8),Q2(8),Q4(8)
C----------------------------------------------------------------------
C Mathematical constants
C----------------------------------------------------------------------
DATA ONE,HALF,TWELVE,ZERO/1.0D0,0.5D0,12.0D0,0.0D0/,
1 FOUR,THRHAL,TWO,PNT68/4.0D0,1.5D0,2.0D0,0.6796875D0/,
2 SQRTPI/0.9189385332046727417803297D0/
C----------------------------------------------------------------------
C Machine dependent parameters
C----------------------------------------------------------------------
DATA XBIG,XINF,EPS,FRTBIG/2.55D305,1.79D308,2.22D-16,2.25D76/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C approximation over (0.5,1.5).
C----------------------------------------------------------------------
DATA D1/-5.772156649015328605195174D-1/
DATA P1/4.945235359296727046734888D0,2.018112620856775083915565D2,
1 2.290838373831346393026739D3,1.131967205903380828685045D4,
2 2.855724635671635335736389D4,3.848496228443793359990269D4,
3 2.637748787624195437963534D4,7.225813979700288197698961D3/
DATA Q1/6.748212550303777196073036D1,1.113332393857199323513008D3,
1 7.738757056935398733233834D3,2.763987074403340708898585D4,
2 5.499310206226157329794414D4,6.161122180066002127833352D4,
3 3.635127591501940507276287D4,8.785536302431013170870835D3/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C Approximation over (1.5,4.0).
C----------------------------------------------------------------------
DATA D2/4.227843350984671393993777D-1/
DATA P2/4.974607845568932035012064D0,5.424138599891070494101986D2,
1 1.550693864978364947665077D4,1.847932904445632425417223D5,
2 1.088204769468828767498470D6,3.338152967987029735917223D6,
3 5.106661678927352456275255D6,3.074109054850539556250927D6/
DATA Q2/1.830328399370592604055942D2,7.765049321445005871323047D3,
1 1.331903827966074194402448D5,1.136705821321969608938755D6,
2 5.267964117437946917577538D6,1.346701454311101692290052D7,
3 1.782736530353274213975932D7,9.533095591844353613395747D6/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C Approximation over (4.0,12.0).
C----------------------------------------------------------------------
DATA D4/1.791759469228055000094023D0/
DATA P4/1.474502166059939948905062D4,2.426813369486704502836312D6,
1 1.214755574045093227939592D8,2.663432449630976949898078D9,
2 2.940378956634553899906876D10,1.702665737765398868392998D11,
3 4.926125793377430887588120D11,5.606251856223951465078242D11/
DATA Q4/2.690530175870899333379843D3,6.393885654300092398984238D5,
2 4.135599930241388052042842D7,1.120872109616147941376570D9,
3 1.488613728678813811542398D10,1.016803586272438228077304D11,
4 3.417476345507377132798597D11,4.463158187419713286462081D11/
C----------------------------------------------------------------------
C Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
DATA C/-1.910444077728D-03,8.4171387781295D-04,
1 -5.952379913043012D-04,7.93650793500350248D-04,
2 -2.777777777777681622553D-03,8.333333333333333331554247D-02,
3 5.7083835261D-03/
C----------------------------------------------------------------------
Y = X
IF ((Y .GT. ZERO) .AND. (Y .LE. XBIG)) THEN
IF (Y .LE. EPS) THEN
RES = -LOG(Y)
ELSE IF (Y .LE. THRHAL) THEN
C----------------------------------------------------------------------
C EPS .LT. X .LE. 1.5
C----------------------------------------------------------------------
IF (Y .LT. PNT68) THEN
CORR = -LOG(Y)
XM1 = Y
ELSE
CORR = ZERO
XM1 = (Y - HALF) - HALF
END IF
IF ((Y .LE. HALF) .OR. (Y .GE. PNT68)) THEN
XDEN = ONE
XNUM = ZERO
DO 140 I = 1, 8
XNUM = XNUM*XM1 + P1(I)
XDEN = XDEN*XM1 + Q1(I)
140 CONTINUE
RES = CORR + (XM1 * (D1 + XM1*(XNUM/XDEN)))
ELSE
XM2 = (Y - HALF) - HALF
XDEN = ONE
XNUM = ZERO
DO 220 I = 1, 8
XNUM = XNUM*XM2 + P2(I)
XDEN = XDEN*XM2 + Q2(I)
220 CONTINUE
RES = CORR + XM2 * (D2 + XM2*(XNUM/XDEN))
END IF
ELSE IF (Y .LE. FOUR) THEN
C----------------------------------------------------------------------
C 1.5 .LT. X .LE. 4.0
C----------------------------------------------------------------------
XM2 = Y - TWO
XDEN = ONE
XNUM = ZERO
DO 240 I = 1, 8
XNUM = XNUM*XM2 + P2(I)
XDEN = XDEN*XM2 + Q2(I)
240 CONTINUE
RES = XM2 * (D2 + XM2*(XNUM/XDEN))
ELSE IF (Y .LE. TWELVE) THEN
C----------------------------------------------------------------------
C 4.0 .LT. X .LE. 12.0
C----------------------------------------------------------------------
XM4 = Y - FOUR
XDEN = -ONE
XNUM = ZERO
DO 340 I = 1, 8
XNUM = XNUM*XM4 + P4(I)
XDEN = XDEN*XM4 + Q4(I)
340 CONTINUE
RES = D4 + XM4*(XNUM/XDEN)
ELSE
C----------------------------------------------------------------------
C Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
RES = ZERO
IF (Y .LE. FRTBIG) THEN
RES = C(7)
YSQ = Y * Y
DO 450 I = 1, 6
RES = RES / YSQ + C(I)
450 CONTINUE
END IF
RES = RES/Y
CORR = LOG(Y)
RES = RES + SQRTPI - HALF*CORR
RES = RES + Y*(CORR-ONE)
END IF
ELSE
C----------------------------------------------------------------------
C Return for bad arguments
C----------------------------------------------------------------------
RES = XINF
END IF
C----------------------------------------------------------------------
C Final adjustments and return
C----------------------------------------------------------------------
DLGAMA = RES
RETURN
C ---------- Last line of DLGAMA ----------
END
|