1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*
* Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* TOMS Transpose. Revised version of algorithm 380.
*
* These routines do in-place transposes of arrays.
*
* [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software,
* vol. 3, no. 1, 104-110 (1977) ]
*
* C version by Steven G. Johnson. February 1997.
*/
#include <stdlib.h>
#include <string.h>
#include "TOMS_transpose.h"
static int TOMS_gcd(int a, int b);
/*
* "a" is a 1D array of length ny*nx which constains the nx x ny matrix to be
* transposed. "a" is stored in C order (last index varies fastest). move
* is a 1D array of length move_size used to store information to speed up
* the process. The value move_size=(ny+nx)/2 is recommended.
*
* The return value indicates the success or failure of the routine. Returns 0
* if okay, -1 if ny or nx < 0, and -2 if move_size < 1. The return value
* should never be positive, but it it is, it is set to the final position in
* a when the search is completed but some elements have not been moved.
*
* Note: move[i] will stay zero for fixed points.
*/
short TOMS_transpose_2d(TOMS_el_type * a,
int nx, int ny,
char *move,
int move_size)
{
int i, j, im, mn;
TOMS_el_type b, c, d;
int ncount;
int k;
/* check arguments and initialize: */
if (ny < 0 || nx < 0)
return -1;
if (ny < 2 || nx < 2)
return 0;
if (move_size < 1)
return -2;
if (ny == nx) {
/*
* if matrix is square, exchange elements a(i,j) and a(j,i):
*/
for (i = 0; i < nx; ++i)
for (j = i + 1; j < nx; ++j) {
b = a[i + j * nx];
a[i + j * nx] = a[j + i * nx];
a[j + i * nx] = b;
}
return 0;
}
ncount = 2; /* always at least 2 fixed points */
k = (mn = ny * nx) - 1;
for (i = 0; i < move_size; ++i)
move[i] = 0;
if (ny >= 3 && nx >= 3)
ncount += TOMS_gcd(ny - 1, nx - 1) - 1; /* # fixed points */
i = 1;
im = ny;
while (1) {
int i1, i2, i1c, i2c;
int kmi;
/** Rearrange the elements of a loop
and its companion loop: **/
i1 = i;
kmi = k - i;
b = a[i1];
i1c = kmi;
c = a[i1c];
while (1) {
i2 = ny * i1 - k * (i1 / nx);
i2c = k - i2;
if (i1 < move_size)
move[i1] = 1;
if (i1c < move_size)
move[i1c] = 1;
ncount += 2;
if (i2 == i)
break;
if (i2 == kmi) {
d = b;
b = c;
c = d;
break;
}
a[i1] = a[i2];
a[i1c] = a[i2c];
i1 = i2;
i1c = i2c;
}
a[i1] = b;
a[i1c] = c;
if (ncount >= mn)
break; /* we've moved all elements */
/** Search for loops to rearrange: **/
while (1) {
int max;
max = k - i;
++i;
if (i > max)
return i;
im += ny;
if (im > k)
im -= k;
i2 = im;
if (i == i2)
continue;
if (i >= move_size) {
while (i2 > i && i2 < max) {
i1 = i2;
i2 = ny * i1 - k * (i1 / nx);
}
if (i2 == i)
break;
} else if (!move[i])
break;
}
}
return 0;
}
/*
* "a" is a 1D array of length ny*nx which constains the nx x ny matrix to be
* transposed. "a" is stored in C order (last index varies fastest). move
* is a 1D array of length move_size used to store information to speed up
* the process. The value move_size=(ny+nx)/2 is recommended.
*
* Here, instead of each element of "a" being a single value of type
* TOMS_el_type, each element is el_size values of type TOMS_el_type.
*
* The return value indicates the success or failure of the routine. Returns 0
* if okay, -1 if ny or nx < 0, and -2 if move_size < 1. Also, returns -3 if
* it ran out of memory. The return value should never be positive, but it
* it is, it is set to the final position in a when the search is completed
* but some elements have not been moved.
*
* Note: move[i] will stay zero for fixed points.
*/
short TOMS_transpose_2d_arbitrary(TOMS_el_type * a,
int nx, int ny,
int el_size,
char *move,
int move_size)
{
int i, j, im, mn;
TOMS_el_type *b, *c, *d;
int ncount;
int k;
/* check arguments and initialize: */
if (ny < 0 || nx < 0)
return -1;
if (ny < 2 || nx < 2 || el_size < 1)
return 0;
if (move_size < 1)
return -2;
b = (TOMS_el_type *) malloc(sizeof(TOMS_el_type) * el_size);
if (!b)
return -3;
if (ny == nx) {
/*
* if matrix is square, exchange elements a(i,j) and a(j,i):
*/
for (i = 0; i < nx; ++i)
for (j = i + 1; j < nx; ++j) {
memcpy(b, &a[el_size * (i + j * nx)], el_size * sizeof(TOMS_el_type));
memcpy(&a[el_size * (i + j * nx)], &a[el_size * (j + i * nx)], el_size * sizeof(TOMS_el_type));
memcpy(&a[el_size * (j + i * nx)], b, el_size * sizeof(TOMS_el_type));
}
free(b);
return 0;
}
c = (TOMS_el_type *) malloc(sizeof(TOMS_el_type) * el_size);
if (!c) {
free(b);
return -3;
}
ncount = 2; /* always at least 2 fixed points */
k = (mn = ny * nx) - 1;
for (i = 0; i < move_size; ++i)
move[i] = 0;
if (ny >= 3 && nx >= 3)
ncount += TOMS_gcd(ny - 1, nx - 1) - 1; /* # fixed points */
i = 1;
im = ny;
while (1) {
int i1, i2, i1c, i2c;
int kmi;
/** Rearrange the elements of a loop
and its companion loop: **/
i1 = i;
kmi = k - i;
memcpy(b, &a[el_size * i1], el_size * sizeof(TOMS_el_type));
i1c = kmi;
memcpy(c, &a[el_size * i1c], el_size * sizeof(TOMS_el_type));
while (1) {
i2 = ny * i1 - k * (i1 / nx);
i2c = k - i2;
if (i1 < move_size)
move[i1] = 1;
if (i1c < move_size)
move[i1c] = 1;
ncount += 2;
if (i2 == i)
break;
if (i2 == kmi) {
d = b;
b = c;
c = d;
break;
}
memcpy(&a[el_size * i1], &a[el_size * i2],
el_size * sizeof(TOMS_el_type));
memcpy(&a[el_size * i1c], &a[el_size * i2c],
el_size * sizeof(TOMS_el_type));
i1 = i2;
i1c = i2c;
}
memcpy(&a[el_size * i1], b, el_size * sizeof(TOMS_el_type));
memcpy(&a[el_size * i1c], c, el_size * sizeof(TOMS_el_type));
if (ncount >= mn)
break; /* we've moved all elements */
/** Search for loops to rearrange: **/
while (1) {
int max;
max = k - i;
++i;
if (i > max) {
free(b);
free(c);
return i;
}
im += ny;
if (im > k)
im -= k;
i2 = im;
if (i == i2)
continue;
if (i >= move_size) {
while (i2 > i && i2 < max) {
i1 = i2;
i2 = ny * i1 - k * (i1 / nx);
}
if (i2 == i)
break;
} else if (!move[i])
break;
}
}
free(b);
free(c);
return 0;
}
static int TOMS_gcd(int a, int b)
{
int r;
do {
r = a % b;
a = b;
b = r;
} while (r != 0);
return a;
}
|