[go: up one dir, main page]

File: model.h

package info (click to toggle)
fasttext 0.9.2%2Bds-8
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,940 kB
  • sloc: cpp: 5,459; python: 2,427; javascript: 635; sh: 621; makefile: 106; xml: 81; perl: 43
file content (79 lines) | stat: -rw-r--r-- 1,720 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

#pragma once

#include <memory>
#include <random>
#include <utility>
#include <vector>

#include "matrix.h"
#include "real.h"
#include "utils.h"
#include "vector.h"

namespace fasttext {

class Loss;

class Model {
 protected:
  std::shared_ptr<Matrix> wi_;
  std::shared_ptr<Matrix> wo_;
  std::shared_ptr<Loss> loss_;
  bool normalizeGradient_;

 public:
  Model(
      std::shared_ptr<Matrix> wi,
      std::shared_ptr<Matrix> wo,
      std::shared_ptr<Loss> loss,
      bool normalizeGradient);
  Model(const Model& model) = delete;
  Model(Model&& model) = delete;
  Model& operator=(const Model& other) = delete;
  Model& operator=(Model&& other) = delete;

  class State {
   private:
    real lossValue_;
    int64_t nexamples_;

   public:
    Vector hidden;
    Vector output;
    Vector grad;
    std::minstd_rand rng;

    State(int32_t hiddenSize, int32_t outputSize, int32_t seed);
    real getLoss() const;
    void incrementNExamples(real loss);
  };

  void predict(
      const std::vector<int32_t>& input,
      int32_t k,
      real threshold,
      Predictions& heap,
      State& state) const;
  void update(
      const std::vector<int32_t>& input,
      const std::vector<int32_t>& targets,
      int32_t targetIndex,
      real lr,
      State& state);
  void computeHidden(const std::vector<int32_t>& input, State& state) const;

  real std_log(real) const;

  static const int32_t kUnlimitedPredictions = -1;
  static const int32_t kAllLabelsAsTarget = -1;
};

} // namespace fasttext