1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# .cov.shrink.tawny
# .getCorFilter.Shrinkage
# .cov.sample.tawny
# .cov.prior.cc
# .cov.prior.identity
# .cor.mean.tawny
# .shrinkage.intensity
# .shrinkage.p
# .shrinkage.r
# .shrinkage.c
################################################################################
# Rmetrics:
# Note that tawny is not available on Debian as of 2009-04-28.
# To run these functions under Debian/Rmetrics we have them
# implemented here as a builtin.
# We also made modifications for tailored usage with Rmetrics.
# Package: tawny
# Title: Provides various portfolio optimization strategies including
# random matrix theory and shrinkage estimators
# Version: 1.0
# Date: 2009-03-02
# Author: Brian Lee Yung Rowe
# Maintainer: Brian Lee Yung Rowe <tawny-help@muxspace.com>
# License: GPL-2
#
# Perform shrinkage on a sample covariance towards a biased covariance
#
# This performs a covariance shrinkage estimation as specified in Ledoit
# and Wolf. Using within the larger framework only requires using the
# getCorFilter.Shrinkage function, which handles the work of constructing
# a shrinkage estimate of the covariance matrix of returns (and consequently
# its corresponding correlation matrix).
# ------------------------------------------------------------------------------
.cov.shrink.tawny <-
function(returns, sample = NULL, prior.fun = .cov.prior.cc, ...)
{
# Shrink the sample covariance matrix towards the model covariance
# matrix for the given time window.
# model - The covariance matrix specified by the model, e.g. single-index,
# Barra, or something else
# sample - The sample covariance matrix. If the sample covariance is null,
# then it will be computed from the returns matrix
# Example
# S.hat <- .cov.shrink.tawny(ys)
# if (.loglevel.tawny() > 0) cat("Shrinking covariance for",last(index(returns)),"\n")
if (is.null(sample)) { S <- .cov.sample.tawny(returns) }
else { S <- sample }
T <- nrow(returns)
# F <- .cov.prior.cc(S)
F <- prior.fun(S, ...)
k <- .shrinkage.intensity(returns, F, S)
d <- max(0, min(k/T, 1))
if (.loglevel.tawny() > 0) cat("Got intensity k =", k,
"and coefficient d =",d,"\n")
S.hat <- d * F + (1 - d) * S
S.hat
}
# ------------------------------------------------------------------------------
.getCorFilter.Shrinkage <-
function(prior.fun = .cov.prior.cc, ...)
{
# Return a correlation matrix generator that is compatible with the
# portfolio optimizer
# Example
# ws <- optimizePortfolio(ys, 100, .getCorFilter.Shrinkage())
# plotPerformance(ys,ws)
function(h) return(cov2cor(.cov.shrink.tawny(h, prior.fun=prior.fun, ...)))
}
# ------------------------------------------------------------------------------
.cov.sample.tawny <-
function(returns)
{
# Calculate the sample covariance matrix from a returns matrix
# Returns a T x N returns matrix
# p.cov <- .cov.sample.tawny(p)
# X is N x T
T <- nrow(returns)
X <- t(returns)
ones <- rep(1,T)
S <- (1/T) * X %*% (diag(T) - 1/T * (ones %o% ones) ) %*% t(X)
S
}
# ------------------------------------------------------------------------------
.cov.prior.cc <-
function(S)
{
# Constant correlation target
# S is sample covariance
r.bar <- .cor.mean.tawny(S)
vars <- diag(S) %o% diag(S)
F <- r.bar * (vars)^0.5
diag(F) <- diag(S)
return(F)
}
# ------------------------------------------------------------------------------
.cov.prior.identity <-
function(S)
{
# This returns a covariance matrix based on the identity (i.e. no
# correlation)
# S is sample covariance
return(diag(nrow(S)))
}
# ------------------------------------------------------------------------------
.cor.mean.tawny <-
function(S)
{
# Get mean of correlations from covariance matrix
N <- ncol(S)
cors <- cov2cor(S)
2 * sum(cors[lower.tri(cors)], na.rm=TRUE) / (N^2 - N)
}
# ------------------------------------------------------------------------------
.shrinkage.intensity <-
function(returns, prior, sample)
{
# Calculate the optimal shrinkage intensity constant
# returns : asset returns T x N
# prior : biased estimator
p <- .shrinkage.p(returns, sample)
r <- .shrinkage.r(returns, sample, p)
c <- .shrinkage.c(prior, sample)
(p$sum - r) / c
}
# ------------------------------------------------------------------------------
.shrinkage.p <-
function(returns, sample)
{
# Sum of the asymptotic variances
# returns : T x N - Matrix of asset returns
# sample : N x N - Sample covariance matrix
# Used internally.
# S <- .cov.sample.tawny(ys)
# ys.p <- .shrinkage.p(ys, S)
T <- nrow(returns)
N <- ncol(returns)
ones <- rep(1,T)
means <- t(returns) %*% ones / T
z <- returns - matrix(rep(t(means), T), ncol=N, byrow=TRUE)
term.1 <- t(z^2) %*% z^2
term.2 <- 2 * sample * (t(z) %*% z)
term.3 <- sample^2
phi.mat <- (term.1 - term.2 + term.3) / T
phi <- list()
phi$sum <- sum(phi.mat)
phi$diags <- diag(phi.mat)
phi
}
# ------------------------------------------------------------------------------
.shrinkage.r <-
function(returns, sample, pi.est)
{
# Estimation for rho when using a constant correlation target
# returns : stock returns
# market : market returns
# Example
# S <- .cov.sample.tawny(ys)
# ys.p <- .shrinkage.p(ys, S)
# ys.r <- .shrinkage.r(ys, S, ys.p)
N <- ncol(returns)
T <- nrow(returns)
ones <- rep(1,T)
means <- t(returns) %*% ones / T
z <- returns - matrix(rep(t(means), T), ncol=N, byrow=TRUE)
r.bar <- .cor.mean.tawny(sample)
# Asymptotic covariance estimator
term.1 <- t(z^3) %*% z
term.2 <- diag(sample) * (t(z) %*% z)
term.3 <- sample * (t(z^2) %*% matrix(rep(1,N*T), ncol=N))
# This can be simplified to diag(sample) * sample, but this expansion is
# a bit more explicit in the intent (unless you're an R guru)
term.4 <- (diag(sample) %o% rep(1,N)) * sample
script.is <- (term.1 - term.2 - term.3 + term.4) / T
# Create matrix of quotients
ratios <- (diag(sample) %o% diag(sample)^-1)^0.5
# Sum results
rhos <- 0.5 * r.bar * (ratios * script.is + t(ratios) * t(script.is))
# Add in sum of diagonals of pi
sum(pi.est$diags, na.rm = TRUE)
+ sum(rhos[lower.tri(rhos)], na.rm = TRUE)
+ sum(rhos[upper.tri(rhos)], na.rm = TRUE)
}
# ------------------------------------------------------------------------------
.shrinkage.c <-
function(prior, sample)
{
# Misspecification of the model covariance matrix
squares <- (prior - sample)^2
sum(squares, na.rm = TRUE)
}
# ------------------------------------------------------------------------------
.loglevel.tawny <-
function (new.level = NULL)
{
if (!is.null(new.level)) {
options(log.level = new.level)
}
if (is.null(getOption("log.level"))) {
return(0)
}
return(getOption("log.level"))
}
################################################################################
|