1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# .DEoptim Differential evolution optimization solver
# .deoptimSummary Summary function
# .deoptimPlot Plot function
################################################################################
# Rmetrics:
# Note that tawny is not available on Debian as of 2009-04-28.
# To run these functions under Debian/Rmetrics we have them
# implemented here as a builtin.
# We also made modifications for tailored usage with Rmetrics.
# Package: DEoptim
# Version: 1.3-0
# Date: 2008-12-03
# Title: Differential Evolution Optimization
# Author: David Ardia <david.ardia@unifr.ch>
# Maintainer: David Ardia <david.ardia@unifr.ch>
# Depends: R (>= 2.2.0)
# Description: This package provides the DEoptim function which performs
# Differential Evolution Optimization (evolutionary algorithm).
# License: GPL version 2 or newer
# URL: http://perso.unifr.ch/david.ardia
# ------------------------------------------------------------------------------
.DEoptim <-
function(FUN, lower, upper, control = list(), trace = TRUE, ...)
{
# Differential Evolution Optimization
# David Ardia, 2008-12-03
# DW: trace added
# DW: round replaced by signif
if (missing(FUN))
stop("'FUN' is missing")
FUN <- match.fun(FUN)
if (missing(lower) || missing(upper))
stop("'lower' or 'upper' is missing")
if (length(lower) != length(upper))
stop("'lower' and 'upper' are not of same length")
if (!is.vector(lower))
lower <- as.vector(lower)
if (!is.vector(upper))
upper <- as.vector(upper)
if (any(lower > upper))
stop("'lower' > 'upper'")
if (any(lower == "Inf"))
warning("you set a component of 'lower' to 'Inf'. May imply 'NaN' results")
if (any(lower == "-Inf"))
warning("you set a component of 'lower' to '-Inf'. May imply 'NaN' results")
if (any(upper == "Inf"))
warning("you set a component of 'upper' to 'Inf'. May imply 'NaN' results")
if (any(upper == "-Inf"))
warning("you set a component of 'upper' to '-Inf'. May imply 'NaN' results")
## Sub-functions
fn.zeros <- function(nr, nc)
matrix(rep.int(0, nr * nc), nrow = nr)
fn.checkBoundaries <- function(x, lower, upper) {
r <- apply(rbind(lower, x), 2, max)
apply(rbind(upper, r), 2, min)
}
d <- length(lower)
con <- list(VTR = -Inf, itermax = 200,
initial = NULL,
storepopfrom = NULL, storepopfreq = 1,
NP = 50, F = 0.8, CR = 0.5, strategy = 2,
refresh = 10, digits = 4)
con[names(control)] <- control
if (con$itermax <= 0) {
warning("'itermax' <= 0; set to default value 200\n", immediate. = TRUE)
con$itermax <- 200
}
if (con$NP < 1) {
warning("'NP' < 1; set to default value 50\n", immediate. = TRUE)
con$NP <- 50
}
NP <- con$NP
if (con$F < 0 | con$F > 2) {
warning("'F' not in [0,2]; set to default value 0.8\n", immediate. = TRUE)
con$F <- 0.8
}
if (con$CR < 0 | con$CR > 1) {
warning("'CR' not in [0,1]; set to default value 0.5\n", immediate. = TRUE)
con$CR <- 0.5
}
if (con$strategy < 1 | con$strategy > 5) {
warning("'strategy' not in {1,...,5}; set to default value 2\n", immediate. = TRUE)
con$strategy <- 2
}
con$refresh <- floor(con$refresh)
if (con$refresh > con$itermax)
con$refresh <- 1
if (is.null(con$initial)) {
## Initialize population and some arrays
pop <- matrix(rep.int(lower, NP), nrow = NP, byrow = TRUE) +
matrix(runif(NP * d), nrow = NP) *
matrix(rep.int(upper - lower, NP), nrow = NP, byrow = TRUE)
}
else{
warning("'initial' population is set by the user\n", immediate. = TRUE)
if (!is.matrix(con$initial)){
warning("'initial' must be a matrix; set it to a matrix\n", immediate. = TRUE)
pop <- matrix(con$initial, nrow = NP, ncol = d)
}
else{
warning("'NP' determined by the number of rows of the 'initial' population\n", immediate = TRUE)
NP <- nrow(con$initial)
pop <- con$initial
if (d != ncol(pop))
warning ("modify the length of 'lower' and 'upper' to match the dimension of 'initial'\n", immediate = TRUE)
}
}
if (is.null(con$storepopfrom)) {
con$storepopfrom <- con$itermax+1
}
con$storepopfreq <- floor(con$storepopfreq)
if (con$storepopfreq > con$itermax)
con$storepopfreq <- 1
storepopiter <- 1
storepop <- list()
## initialization
popold <- fn.zeros(NP,d) ## toggle population
val <- rep.int(0,NP) ## create and reset the "cost array"
bestmem <- bestmemit <- rep.int(0,d) ## best population member ever and iteration
## Evaluate the best member after initialization
nfeval <- NP ## number of function evaluations
val <- apply(pop, 1, FUN, ...)
if (any(is.nan(val)))
stop ("your function returns 'NaN'; modify it or change 'lower' or 'upper' boundaries")
if (any(is.na(val)))
stop ("your function returns 'NA'; modify it or change 'lower' or 'upper' boundaries")
bestval <- bestvalit <- min(val)
ibest <- match(bestvalit, val)
bestmem <- pop[ibest,]
bestmemit <- matrix(bestmem, nrow = 1)
## DE - optimization
##
## popold is the population which has to compete. It is
## static through one iteration. pop is the newly emerging population.
pm1 <- pm2 <- pm3 <- pm4 <- pm5 <- fn.zeros(NP,d) ## initialize population matrix 1 - 5
bm <- ui <- mui <- mpo <- fn.zeros(NP,d)
rot <- seq(from = 0, by = 1, to = (NP-1))## rotating index array (size NP)
rotd <- seq(from = 0, by = 1, to = (d-1)) ## rotating index array (size d)
rt <- fn.zeros(NP,NP) ## another rotating index array
rtd <- fn.zeros(d,d) ## rotating index array for exponential crossover
a1 <- a2 <- a3 <- a4 <- a5 <- fn.zeros(NP,NP) ## index array 1 - 5
ind <- fn.zeros(4,4)
iter <- 1
while (iter <= con$itermax & bestval >= con$VTR){
popold <- pop ## save old population
ind <- sample(1:4) ## index pointer array
a1 <- sample(1:NP) ## shuffle locations and rotate vectors
rt <- (rot + ind[1]) %% NP
a2 <- a1[rt + 1]
rt <- (rot + ind[2]) %% NP
a3 <- a2[rt + 1]
rt <- (rot + ind[3]) %% NP
a4 <- a3[rt + 1]
rt <- (rot + ind[4]) %% NP
a5 <- a4[rt + 1]
pm1 <- popold[a1,] ## shuffled populations 1 - 5
pm2 <- popold[a2,]
pm3 <- popold[a3,]
pm4 <- popold[a4,]
pm5 <- popold[a5,]
bm <- matrix(rep.int(bestmemit[iter,], NP), nrow = NP, byrow = TRUE) ## population filled with
## the best member of the last iteration
mui <- matrix(runif(NP * d), nrow = NP) < con$CR ## all random numbers < CR are 1, 0 otherwise
mpo <- mui < 0.5
if (con$strategy == 1) { ## best / 1
ui <- bm + con$F * (pm1 - pm2) ## differential variation
ui <- popold * mpo + ui * mui ## crossover
}
else if (con$strategy == 2) { ## rand / 1
ui <- pm3 + con$F * (pm1 - pm2) ## differential variation
ui <- popold * mpo + ui * mui ## crossover
}
else if (con$strategy == 3) { ## rand-to-best / 1
ui <- popold + con$F * (bm - popold) + con$F * (pm1 - pm2) ## differential variation
ui <- popold * mpo + ui * mui ## crossover
}
else if (con$strategy == 4) { ## best / 2
ui <- bm + con$F * (pm1 - pm2 + pm3 - pm4) ## differential variation
ui <- popold * mpo + ui * mui ## crossover
}
else { ## rand / 2
ui <- pm5 + con$F * (pm1 - pm2 + pm3 - pm4) ## differential variation
ui <- popold * mpo + ui * mui ## crossover
}
for (i in 1:NP)
ui[i,] <- fn.checkBoundaries(ui[i,], lower, upper) ## check whether
## the components are within the boundaries
nfeval <- nfeval + NP
tempval <- apply(ui, 1, FUN, ...) ## check cost of competitor
if (any(is.nan(tempval)))
stop ("'your function returns 'NaN'; modify it or change 'lower' or 'upper' boundaries")
if (any(is.na(tempval)))
stop ("your function returns 'NA'; modify it or change 'lower' or 'upper' boundaries")
ichange <- tempval <= val
val[ichange] <- tempval[ichange]
pop[ichange,] <- ui[ichange,]
bestval <- min(val)
bestvalit <- c(bestvalit, bestval)
ibest <- match(bestval, val)
bestmem <- pop[ibest,]
bestmemit <- rbind(bestmemit, bestmem)
## keeppop
if (iter >= con$storepopfrom & iter %% con$storepopfreq == 0){
storepop[[storepopiter]] <- pop
storepopiter <- storepopiter + 1
}
## refresh output
if (con$refresh > 0 & iter %% con$refresh == 0) {
if (trace) cat("iteration: ", iter,
"best member: " , signif(bestmem, con$digits),
"best value: ", signif(bestval, con$digits), "\n")
}
iter <- iter + 1
}
if (!is.null(names(lower)))
nam <- names(lower)
else if (!is.null(names(upper)) & is.null(names(lower)))
nam <- names(upper)
else
nam <- paste("par", 1:length(lower), sep = "")
names(lower) <- names(upper) <- names(bestmem) <- nam
dimnames(bestmemit) <- list(1:iter, nam)
r <- list(optim = list(
bestmem = bestmem,
bestval = bestval,
nfeval = nfeval,
iter = iter-1),
member = list(
lower = lower,
upper = upper,
bestvalit = bestvalit,
bestmemit = bestmemit,
pop = pop,
storepop = storepop))
attr(r, "class") <- "DEoptim"
return(r)
}
# ------------------------------------------------------------------------------
.deoptimSummary <-
function(object, ...)
{
digits <- max(5, getOption('digits') - 2)
z <- object$optim
cat("\n***** summary of DEoptim object *****",
"\nbest member : ", round(z$bestmem, digits),
"\nbest value : ", round(z$bestval, digits),
"\nafter : ", round(z$iter), "iterations",
"\nFUN evaluated : ", round(z$nfeval), "times",
"\n*************************************\n")
invisible(z)
}
# ------------------------------------------------------------------------------
.deoptimPlot <-
function(x, plot.type = c("bestmemit","bestvalit"), ...)
{
z <- x$member
n <- length(z$bestvalit)
plot.type <- plot.type[1]
if (plot.type == "bestmemit"){
npar <- length(z$lower)
nam <- names(z$lower)
if (npar == 1){
plot(1:n, z$bestmemit,
xlab = "iteration", ylab = "value", main = nam, ...)
abline(h = c(z$lower, z$upper), col = 'red')
}
else if (npar == 2){
plot(z$bestmemit[,1], z$bestmemit[,2],
xlab = nam[1], ylab = nam[2], ...)
abline(h = c(z$lower[1], z$upper[1]), col = 'red')
abline(v = c(z$lower[2], z$upper[2]), col = 'red')
}
else{
par(mfrow = c(npar,1))
for (i in 1:npar){
plot(1:n, z$bestmemit[,i],
xlab = "iteration", ylab = "value", main = nam[i], ...)
abline(h = c(z$lower[i], z$upper[i]), col = 'red')
}
}
}
else
plot(1:n, z$bestvalit,
xlab = "iteration", ylab = "function value",
main = "convergence plot", ...)
}
################################################################################
|