[go: up one dir, main page]

File: plot-hist.R

package info (click to toggle)
fassets 3011.82-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 424 kB
  • sloc: makefile: 1
file content (175 lines) | stat: -rw-r--r-- 5,805 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:                   DESCRIPTION:
#  assetsHistPlot              Displays a histograms of a single asset 
#  assetsLogDensityPlot        Displays a pdf plot on logarithmic scale
################################################################################


assetsHistPlot =
    function(x, col = "steelblue", skipZeros = FALSE, ...)
{   
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Displays a histograms of a single asset

    # Arguments:
    #   x - a timeSeries object or any other rectangular object
    #       which can be transformed by the function as. matrix
    #       into a numeric matrix.

    # Example:
    #   x = as.timeSeries(data(LPP2005REC)) 
    #   par(mfrow = c(3,3)); assetsHistPlot(x); par(mfrow = c(1,1))
    
    # FUNCTION:

    # Settings:
    n = ncol(x)
    if (length(col) == 1) col = rep(col, times = n)

    # Plot:
    for (i in 1:n) {
        X = x[, i]
        if (skipZeros) X = X[series(X) != 0]
        histPlot(X, ylab = "Cumulated Returns", col = col[i], ...)
    }

    # Return Value:
    invisible()
}


# ------------------------------------------------------------------------------


assetsLogDensityPlot =
    function(x, estimator = c("hubers", "sample", "both"),
    labels = TRUE, ...)
{   
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Displays a pdf plot on logarithmic scale

    # Arguments:
    #   x - an uni- or multivariate return series of class 'timeSeries'
    #       or any other object which can be transformed by the function
    #       'as.timeSeries()' into an object of class 'timeSeries'.
    #   estimator - the type of estimator to fit the mean and variance
    #       of the density.
    #   doplot - a logical flag, by default TRUE. Should a plot be
    #       displayed?
    #   labels - a logical flag, by default TRUE. Should a default main
    #       title and labels addet to the plot?
    #   ... -

    # Details:
    #   Returns a pdf plot on a lin-log scale in comparison to a Gaussian
    #   density plot Two type of fits are available: a normal density with
    #   fitted sample mean and sample standard deviation, or a normal
    #   density with Hubers robust mean and standard deviation corfrected
    #   by the bandwidth of the Kernel estimator.

    # Example:
    #   x = as.timeSeries(data(LPP2005REC)) 
    #   par(mfrow=c(3,3)); assetsLogDensityPlot(x, "hubers"); par(mfrow=c(1,1))
    #   par(mfrow=c(3,3)); assetsLogDensityPlot(x, "sample"); par(mfrow=c(1,1))
    #   par(mfrow=c(3,3)); assetsLogDensityPlot(x, "both"); par(mfrow=c(1,1))
    
    # FUNCTION:

    # Settings:
    if (!is.timeSeries(x)) x = as.timeSeries(x)
    Units = colnames(x)
    doplot = TRUE

    # Select Type:
    estimator = match.arg(estimator)

    # Labels:
    if (labels) {
        main = "log PDF"
        xlab = "x"
        ylab = "log PDF"
    } else {
        main = xlab = ylab = ""
    }

    X = x

    for (i in 1:ncol(x)) {

        # Transform Data:
        x = as.vector(X[, i])
        if (labels) main = Units[i]

        # Kernel and Histogram Estimators:
        Density = density(x)
        Histogram = hist(x, breaks = "FD", plot = FALSE)
        result = list(density = Density, hist = Histogram)

        # Plot:
        if (doplot) {
            # Plot Frame:
            plot(Histogram$mids, log(Histogram$density), type = "n",
                lwd = 5, main = Units[i], xlab = xlab, ylab = ylab,
                xlim = range(Density$x), ylim = log(range(Density$y)),
                col = "red", ...)

            # Plot Density:
            points(Density$x, log(Density$y), pch = 19, col = "darkgrey",
                cex = 0.7)

            # Sample Line Fit:
            s = seq(min(Density$x), max(Density$x), length = 1001)
            if (estimator == "sample" || estimator == "both") {
                lines(s, log(dnorm(s, mean(x), sd(x))), col = "red", lwd = 2)
            }

            # Robust Huber Line Fit:
            if (estimator == "hubers" || estimator == "both") {
                h = MASS::hubers(x)
                logDensity = log(dnorm(s,
                    mean = h[[1]],
                    sd = sqrt(h[[2]]^2+Density$bw^2)))
                minLogDensity = log(min(Density$y))
                lines(
                    x = s[logDensity > minLogDensity],
                    y = logDensity[logDensity > minLogDensity],
                    col = "orange", lwd = 2)
            }

            # Plot Histogram:
            points(Histogram$mids, log(Histogram$density), pch = 19,
                col = "steelblue", ...)

            # Grid:
            if (labels) grid()
        }
    }

    # Return Value:
    invisible(result)
}


################################################################################