1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# .filter.RMT Returns filtered correlation matrix from RMT
# .mp.density.kernel Returns kernel density estimate
# .mp.fit.kernel Function for fitting the density
# .mp.rho Theoretical density for a set of eigenvalues.
# .mp.theory Calculate and plot the theoretical density distribution
# .mp.lambdas Generate eigenvalues for theoretical MP distribution
# .dmp Density in R notation style
################################################################################
# Rmetrics:
# Note that tawny is not available on Debian as of 2009-04-28.
# To run these functions under Debian/Rmetrics we have them
# implemented here as a builtin.
# We also made modifications for tailored usage with Rmetrics.
# Package: tawny
# Title: Provides various portfolio optimization strategies including
# random matrix theory and shrinkage estimators
# Version: 1.0
# Date: 2009-03-02
# Author: Brian Lee Yung Rowe
# Maintainer: Brian Lee Yung Rowe <tawny-help@muxspace.com>
# License: GPL-2
# Modifications done by Diethelm Wuertz
# ... works with Rmetrics S4 timeSeries objects
# ... using DEoptim (David Ardia) instead of optim
# ------------------------------------------------------------------------------
.filter.RMT <-
function(h, trace = TRUE, doplot = TRUE)
{
# Description:
# Returns filtered correlation matrix from random matrix theory
# Arguments:
# h - a multivariate time series object of class timeSeries
# Example:
# h = 100 * LPP2005.RET; cor = .filter.RMT(h, FALSE, FALSE)
# FUNCTION:
# Get Data Part:
h = getDataPart(h)
# .mp.density.kernel()
# Calculating eigenvalue distribution
mp.hist <-
.mp.density.kernel(h, adjust = 0.2, kernel = 'e', doplot = doplot)
# .mp.fit.kernel()
# Here we use the DEoptim solver. The reason for this is that the
# objective function is not convex, there exist a lot of local minima
# ... using David Ardia's DEoptim Package
# DW: To do: modify .DEoptim for a better stop criterion for Q and sigma
mp.result <- .DEoptim(
FUN = .mp.fit.kernel,
# Empirically, Q < 0 and sigmas < 0.2 are unrealistic
lower = c(Q = 0, sigma = 0.2),
upper = c(10, 10),
control = list(itermax = 200),
trace = trace,
hist = mp.hist)
# The solution Q and Sigma:
mp.Q <- mp.result$optim$bestmem[1]
mp.sigma <- mp.result$optim$bestmem[2]
if (trace) print(c(mp.Q, mp.sigma))
# Plot:
if (doplot) rho <- .mp.theory(mp.Q, mp.sigma)
# Cleaning eigenvalues:
lambda.1 <- mp.hist$values[1]
sigma.2 <- sqrt(1 - lambda.1/length(mp.hist$values))
lambda.plus <- sigma.2^2 * (1 + sqrt(1/mp.Q))^2
# Cleaning correlation matrix:
ans = .denoise(mp.hist, lambda.plus, h)
if (trace) {
cat("Upper cutoff (lambda.max) is",lambda.plus,"\n")
cat("Variance is", sigma.2, "\n")
cat("Greatest eigenvalue is", lambda.1, "\n")
}
# Return Value:
ans
}
# ------------------------------------------------------------------------------
.mp.density.kernel <-
function(h, adjust = 0.2, kernel = 'e', doplot = TRUE, ...)
{
# Description:
# Returns kernel density estimate
# Arguments:
# h - a multivariate time series object of class timeSeries
# adjust, kernel - arguments passed to function density()
# FUNCTION:
# Compute normalized correlation matrix:
e = cov2cor(cov(h/colSds(h)))
# Calculate eigenvalues
lambda <- eigen(e, symmetric = TRUE, only.values = FALSE)
ds <- density(lambda$values, adjust = adjust, kernel = kernel, ...)
ds$ adjust <- adjust
ds$kernel <- kernel
ds$values <- lambda$values
ds$vectors <- lambda$vectors
# Plot:
if(doplot) plot(ds, xlim = c(0, max(ds$values)*1.2),
main = 'Eigenvalue Distribution')
# Return Value:
return(ds)
}
# ------------------------------------------------------------------------------
.mp.fit.kernel <-
function(ps, hist)
{
# Description:
# Function for fitting the density
# Arguments:
# ps - a numeric vector with two numeric entries, Q and sigma
# hist - histogram as returned by the function .mp.density.kernel(h)
# Note:
# Calls function .mp.rho()
# FUNCTION:
# Settings:
BIG <- 1e14
zeros <- which(hist$y == 0)
wholes <- which(hist$y > 0)
after <- head(zeros[zeros > wholes[1]], 1)
l.plus <- hist$x[after]
Q <- ps[1]
sigma <- ps[2]
rhos <- .mp.rho(Q, sigma, hist$x)
# Just use some very large number to prevent it from being used
# as optimal score
if (max(rhos) == 0) return(BIG)
# Scale densities so that the max values of each are about the same.
# This is a bit of hand-waving to get the best fit
scale <- max(rhos) / max(hist$y) + 0.25
# Shift the densities to get a better fit
whole.idx <- head(rhos[rhos > 0], 1)
hist$y <- c(
rep(0, whole.idx-1),
tail(hist$y, length(hist$y) - whole.idx+1))
# Normalize based on amount of density below MP upper limit
# This is basically dividing the distance by the area under
# the curve, which gives a bias towards larger areas
norm.factor <- sum(rhos[hist$x <= l.plus])
# DW: Check this ...
hist$y = hist$y[1:length(rhos)]
dy <- (rhos - (hist$y * scale)) / norm.factor
# Just calculate the distances of densities less than the MP
# upper limit
dist <- as.numeric(dy %*% dy)
if (is.na(dist)) dist = BIG
# Return Value:
dist
}
# ------------------------------------------------------------------------------
.mp.rho <-
function(Q, sigma, e.values)
{
# Description:
# This provides the theoretical density for a set of eigenvalues.
# These are really just points along the x axis for which the
# eigenvalue density is desired.
# Arguments:
# Q, sigma - Marcenko-Pastur distribution parameters.
# e.values - can be a vector of eigen values or a single eigen value.
# Example:
# e.values = seq(-0.5, 4.5, length = 101)
# plot(e.values, .mp.rho(2, 1, e.values), type = "h")
# points(e.values, .mp.rho(2, 1, e.values), type = "l", col = "red")
# FUNCTION:
# Get min and max eigenvalues specified by Marcenko-Pastur
l.min <- sigma^2 * (1 - sqrt(1/Q))^2
l.max <- sigma^2 * (1 + sqrt(1/Q))^2
# Provide theoretical density:
k <- (Q / 2*pi*sigma^2)
rho <- k * sqrt(pmax(0, (l.max-e.values)*(e.values-l.min)) ) / e.values
rho[is.na(rho)] <- 0
# Return Value:
attr(rho, "e.values") <- e.values
rho
}
# ------------------------------------------------------------------------------
.mp.theory <-
function(Q, sigma, e.values = NULL, steps = 200)
{
# Description:
# Calculate and plot the theoretical density distribution
# Arguments:
# Q, sigma - Marcenko-Pastur distribution parameters.
# e.values - The eigenvalues to plot the density against.
# This can really be any point on the xaxis.
# Note:
# calls function .mp.lambdas(), .mp.rho()
# Example:
# FUNCTION:
# Plot a range of values
if (is.null(e.values)) {
e.values <- .mp.lambdas(Q, sigma, steps)
}
rho <- .mp.rho(Q, sigma, e.values)
if (length(e.values) > 1) {
l.min <- sigma^2 * (1 - sqrt(1/Q))^2
l.max <- sigma^2 * (1 + sqrt(1/Q))^2
xs <- seq(round(l.min-1), round(l.max+1), (l.max-l.min)/steps)
main <- paste('Marcenko-Pastur Distribution for Q',Q,'and sigma',sigma)
plot(xs, rho, xlim = c(0, 6), type = 'l', main = main)
}
# Return Value:
rho
}
# ------------------------------------------------------------------------------
.mp.lambdas <-
function(Q, sigma, steps, trace = FALSE)
{
# Descrption:
# Generate eigenvalues for theoretical Marcenko-Pastur distribution
# Arguments:
# Q, sigma - Marcenko-Pastur distribution parameters
# steps -
# trace -
# FUNCTION:
# Min and Max Eigenvalues:
l.min <- sigma^2 * (1 - sqrt(1/Q))^2
l.max <- sigma^2 * (1 + sqrt(1/Q))^2
if (trace) {
cat("min eigenvalue:", l.min, "\n")
cat("max eigenvalue:", l.max, "\n")}
evs <- seq(round(l.min-1), round(l.max+1), (l.max-l.min)/steps)
evs[evs < l.min] <- l.min
evs[evs > l.max] <- l.max
if (trace) {
# cat("x labels: ", xs, "\n")
cat("eigenvalues: ", evs, "\n")
}
# Return Value:
evs
}
# ------------------------------------------------------------------------------
.denoise <-
function(hist, lambda.plus = 1.6, h = NULL)
{
# Description:
# Clean a correlation matrix based on calculated value of lambda.plus
# and the computed eigenvalues.
# This takes flattened eigenvalues and returns a new cleaned
# correlation matrix
# Arguments:
# e.values - Cleaned eigenvalues
# e.vectors - Eigenvectors of correlation matrix of normalized returns
# h - non-normalized returns matrix (only used for labels)
# FUNCTION:
e.values <- hist$values
avg <- mean(e.values[e.values < lambda.plus])
e.values[e.values < lambda.plus] <- avg
e.vectors <- hist$vectors
c.clean <- e.vectors %*% diag(e.values) %*% t(e.vectors)
diags <- diag(c.clean) %o% rep(1, nrow(c.clean))
c.clean <- c.clean / sqrt(diags * t(diags))
if (! is.null(h)) {
rownames(c.clean) <- colnames(h)
colnames(c.clean) <- colnames(h)
}
# Return Value:
c.clean
}
# ------------------------------------------------------------------------------
.dmp =
function(x, Q = 2, sigma = 1)
{
# Description:
# This provides the theoretical density for a set of eigenvalues.
# These are really just points along the x axis for which the
# eigenvalue density is desired.
# Arguments:
# x -
# Q, sigma - Marcenko-Pastur distribution parameters.
# Example:
# x = seq(-0.5, 4.5, length = 1001); plot(x, dmp(x, 2, 1), type = "l")
# FUNCTION:
# Get min and max eigenvalues specified by Marcenko-Pastur
l.min <- sigma^2 * (1 - sqrt(1/Q))^2
l.max <- sigma^2 * (1 + sqrt(1/Q))^2
# Provide theoretical density:
k <- (Q / 2*pi*sigma^2)
rho <- k * sqrt(pmax(0, (l.max-x)*(x-l.min)) ) / x
rho[is.na(rho)] <- 0
# Return Value:
rho
}
################################################################################
|