1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#!/usr/bin/env python3
# facedetect: a simple face detector for batch processing
# Copyright(c) 2013-2016 by wave++ "Yuri D'Elia" <wavexx@thregr.org>
# Distributed under GPLv2+ (see COPYING) WITHOUT ANY WARRANTY.
import argparse
import numpy as np
import cv2
import math
import sys
import os
# CV compatibility stubs
if 'IMREAD_GRAYSCALE' not in dir(cv2):
# <2.4
cv2.IMREAD_GRAYSCALE = 0
if 'cv' in dir(cv2):
# <3.0
cv2.CASCADE_DO_CANNY_PRUNING = cv2.cv.CV_HAAR_DO_CANNY_PRUNING
cv2.CASCADE_FIND_BIGGEST_OBJECT = cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT
cv2.FONT_HERSHEY_SIMPLEX = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5, 0, 1, cv2.cv.CV_AA)
cv2.LINE_AA = cv2.cv.CV_AA
def getTextSize(buf, font, scale, thickness):
return cv2.cv.GetTextSize(buf, font)
def putText(im, line, pos, font, scale, color, thickness, lineType):
return cv2.cv.PutText(cv2.cv.fromarray(im), line, pos, font, color)
cv2.getTextSize = getTextSize
cv2.putText = putText
# Profiles
DATA_DIR = '/usr/share/opencv4/'
CASCADES = {}
PROFILES = {
'HAAR_FRONTALFACE_ALT2': 'haarcascades/haarcascade_frontalface_alt2.xml',
}
# Face normalization
NORM_SIZE = 100
NORM_MARGIN = 10
# Support functions
def error(msg):
sys.stderr.write("{}: error: {}\n".format(os.path.basename(sys.argv[0]), msg))
def fatal(msg):
error(msg)
sys.exit(1)
def load_cascades(data_dir):
for k, v in PROFILES.items():
v = os.path.join(data_dir, v)
try:
if not os.path.exists(v):
raise cv2.error('no such file')
CASCADES[k] = cv2.CascadeClassifier(v)
except cv2.error:
fatal("cannot load {} from {}".format(k, v))
def crop_rect(im, rect, shave=0):
return im[rect[1]+shave:rect[1]+rect[3]-shave,
rect[0]+shave:rect[0]+rect[2]-shave]
def shave_margin(im, margin):
return im[margin:-margin, margin:-margin]
def norm_rect(im, rect, equalize=True, same_aspect=False):
roi = crop_rect(im, rect)
if equalize:
roi = cv2.equalizeHist(roi)
side = NORM_SIZE + NORM_MARGIN
if same_aspect:
scale = side / max(rect[2], rect[3])
dsize = (int(rect[2] * scale), int(rect[3] * scale))
else:
dsize = (side, side)
roi = cv2.resize(roi, dsize, interpolation=cv2.INTER_CUBIC)
return shave_margin(roi, NORM_MARGIN)
def rank(im, rects):
scores = []
best = None
for i in range(len(rects)):
rect = rects[i]
roi_n = norm_rect(im, rect, equalize=False, same_aspect=True)
roi_l = cv2.Laplacian(roi_n, cv2.CV_8U)
e = np.sum(roi_l) / (roi_n.shape[0] * roi_n.shape[1])
dx = im.shape[1] / 2 - rect[0] + rect[2] / 2
dy = im.shape[0] / 2 - rect[1] + rect[3] / 2
d = math.sqrt(dx ** 2 + dy ** 2) / (max(im.shape) / 2)
s = (rect[2] + rect[3]) / 2
scores.append({'s': s, 'e': e, 'd': d})
sMax = max([x['s'] for x in scores])
eMax = max([x['e'] for x in scores])
for i in range(len(scores)):
s = scores[i]
sN = s['sN'] = s['s'] / sMax
eN = s['eN'] = s['e'] / eMax
f = s['f'] = eN * 0.7 + (1 - s['d']) * 0.1 + sN * 0.2
ranks = list(range(len(scores)))
ranks = sorted(ranks, reverse=True, key=lambda x: scores[x]['f'])
for i in range(len(scores)):
scores[ranks[i]]['RANK'] = i
return scores, ranks[0]
def mssim_norm(X, Y, K1=0.01, K2=0.03, win_size=11, sigma=1.5):
C1 = K1 ** 2
C2 = K2 ** 2
cov_norm = win_size ** 2
ux = cv2.GaussianBlur(X, (win_size, win_size), sigma)
uy = cv2.GaussianBlur(Y, (win_size, win_size), sigma)
uxx = cv2.GaussianBlur(X * X, (win_size, win_size), sigma)
uyy = cv2.GaussianBlur(Y * Y, (win_size, win_size), sigma)
uxy = cv2.GaussianBlur(X * Y, (win_size, win_size), sigma)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
A1 = 2 * ux * uy + C1
A2 = 2 * vxy + C2
B1 = ux ** 2 + uy ** 2 + C1
B2 = vx + vy + C2
D = B1 * B2
S = (A1 * A2) / D
return np.mean(shave_margin(S, (win_size - 1) // 2))
def face_detect(im, biggest=False):
side = math.sqrt(im.size)
minlen = int(side / 20)
maxlen = int(side / 2)
flags = cv2.CASCADE_DO_CANNY_PRUNING
# optimize queries when possible
if biggest:
flags |= cv2.CASCADE_FIND_BIGGEST_OBJECT
# frontal faces
cc = CASCADES['HAAR_FRONTALFACE_ALT2']
features = cc.detectMultiScale(im, 1.1, 4, flags, (minlen, minlen), (maxlen, maxlen))
return features
def face_detect_file(path, biggest=False):
im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if im is None:
fatal("cannot load input image {}".format(path))
im = cv2.equalizeHist(im)
features = face_detect(im, biggest)
return im, features
def pairwise_similarity(im, features, template, **mssim_args):
template = np.float32(template) / 255
for rect in features:
roi = norm_rect(im, rect)
roi = np.float32(roi) / 255
yield mssim_norm(roi, template, **mssim_args)
def __main__():
ap = argparse.ArgumentParser(description='A simple face detector for batch processing')
ap.add_argument('--biggest', action="store_true",
help='Extract only the biggest face')
ap.add_argument('--best', action="store_true",
help='Extract only the best matching face')
ap.add_argument('-c', '--center', action="store_true",
help='Print only the center coordinates')
ap.add_argument('--data-dir', metavar='DIRECTORY', default=DATA_DIR,
help='OpenCV data files directory')
ap.add_argument('-q', '--query', action="store_true",
help='Query only (exit 0: face detected, 2: no detection)')
ap.add_argument('-s', '--search', metavar='FILE',
help='Search for faces similar to the one supplied in FILE')
ap.add_argument('--search-threshold', metavar='PERCENT', type=int, default=30,
help='Face similarity threshold (default: 30%%)')
ap.add_argument('-o', '--output', help='Image output file')
ap.add_argument('-d', '--debug', action="store_true",
help='Add debugging metrics in the image output file')
ap.add_argument('file', help='Input image file')
args = ap.parse_args()
load_cascades(args.data_dir)
# detect faces in input image
im, features = face_detect_file(args.file, args.query or args.biggest)
# match against the requested face
sim_scores = None
if args.search:
s_im, s_features = face_detect_file(args.search, True)
if len(s_features) == 0:
fatal("cannot detect face in template")
sim_scores = []
sim_features = []
sim_threshold = args.search_threshold / 100
sim_template = norm_rect(s_im, s_features[0])
for i, score in enumerate(pairwise_similarity(im, features, sim_template)):
if score >= sim_threshold:
sim_scores.append(score)
sim_features.append(features[i])
features = sim_features
# exit early if possible
if args.query:
return 0 if len(features) else 2
# compute scores
scores = []
best = None
if len(features) and (args.debug or args.best or args.biggest or sim_scores):
scores, best = rank(im, features)
if sim_scores:
for i in range(len(features)):
scores[i]['MSSIM'] = sim_scores[i]
# debug features
if args.output:
im = cv2.imread(args.file)
font = cv2.FONT_HERSHEY_SIMPLEX
fontHeight = cv2.getTextSize("", font, 0.5, 1)[0][1] + 5
for i in range(len(features)):
if best is not None and i != best and not args.debug:
next
rect = features[i]
fg = (0, 255, 255) if i == best else (255, 255, 255)
xy1 = (rect[0], rect[1])
xy2 = (rect[0] + rect[2], rect[1] + rect[3])
cv2.rectangle(im, xy1, xy2, (0, 0, 0), 4)
cv2.rectangle(im, xy1, xy2, fg, 2)
if args.debug:
lines = []
for k, v in scores[i].items():
lines.append("{}: {}".format(k, v))
h = rect[1] + rect[3] + fontHeight
for line in lines:
cv2.putText(im, line, (rect[0], h), font, 0.5, fg, 1, cv2.LINE_AA)
h += fontHeight
cv2.imwrite(args.output, im)
# output
if (args.best or args.biggest) and best is not None:
features = [features[best]]
if args.center:
for rect in features:
x = int(rect[0] + rect[2] / 2)
y = int(rect[1] + rect[3] / 2)
print("{} {}".format(x, y))
else:
for rect in features:
print("{} {} {} {}".format(*rect))
return 0
if __name__ == '__main__':
sys.exit(__main__())
|