[go: up one dir, main page]

File: localpca.py

package info (click to toggle)
dipy 1.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,828 kB
  • sloc: python: 63,790; makefile: 258; pascal: 167; sh: 131; ansic: 106
file content (372 lines) | stat: -rw-r--r-- 15,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import numpy as np
try:
    from scipy.linalg.lapack import dgesvd as svd
    svd_args = [1, 0]
    # If you have an older version of scipy, we fall back
    # on the standard scipy SVD API:
except ImportError:
    from scipy.linalg import svd
    svd_args = [False]
from scipy.linalg import eigh


def _pca_classifier(L, nvoxels):
    """ Classifies which PCA eigenvalues are related to noise and estimates the
    noise variance

    Parameters
    ----------
    L : array (n,)
        Array containing the PCA eigenvalues in ascending order.
    nvoxels : int
        Number of voxels used to compute L

    Returns
    -------
    var : float
        Estimation of the noise variance
    ncomps : int
        Number of eigenvalues related to noise

    Notes
    -----
    This is based on the algorithm described in [1]_.

    References
    ----------
    .. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
           Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
           theory. Neuroimage 142:394-406.
           doi: 10.1016/j.neuroimage.2016.08.016
    """
    var = np.mean(L)
    c = L.size - 1
    r = L[c] - L[0] - 4 * np.sqrt((c + 1.0) / nvoxels) * var
    while r > 0:
        var = np.mean(L[:c])
        c = c - 1
        r = L[c] - L[0] - 4 * np.sqrt((c + 1.0) / nvoxels) * var
    ncomps = c + 1
    return var, ncomps


def genpca(arr, sigma=None, mask=None, patch_radius=2, pca_method='eig',
           tau_factor=None, return_sigma=False, out_dtype=None):
    r"""General function to perform PCA-based denoising of diffusion datasets.

    Parameters
    ----------
    arr : 4D array
        Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
        are the diffusion gradient directions.
    sigma : float or 3D array (optional)
        Standard deviation of the noise estimated from the data. If no sigma
        is given, this will be estimated based on random matrix theory
        [1]_,[2]_
    mask : 3D boolean array (optional)
        A mask with voxels that are true inside the brain and false outside of
        it. The function denoises within the true part and returns zeros
        outside of those voxels.
    patch_radius : int or 1D array (optional)
        The radius of the local patch to be taken around each voxel (in
        voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
    pca_method : 'eig' or 'svd' (optional)
        Use either eigenvalue decomposition (eig) or singular value
        decomposition (svd) for principal component analysis. The default
        method is 'eig' which is faster. However, occasionally 'svd' might be
        more accurate.
    tau_factor : float (optional)
        Thresholding of PCA eigenvalues is done by nulling out eigenvalues that
        are smaller than:

        .. math ::

                \tau = (\tau_{factor} \sigma)^2

        \tau_{factor} can be set to a predefined values (e.g. \tau_{factor} =
        2.3 [3]_), or automatically calculated using random matrix theory
        (in case that \tau_{factor} is set to None).
        Default: None.
    return_sigma : bool (optional)
        If true, the Standard deviation of the noise will be returned.
        Default: False.
    out_dtype : str or dtype (optional)
        The dtype for the output array. Default: output has the same dtype as
        the input.

    Returns
    -------
    denoised_arr : 4D array
        This is the denoised array of the same size as that of the input data,
        clipped to non-negative values

    References
    ----------
    .. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
           Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
           theory. Neuroimage 142:394-406.
           doi: 10.1016/j.neuroimage.2016.08.016
    .. [2] Veraart J, Fieremans E, Novikov DS. 2016. Diffusion MRI noise
           mapping using random matrix theory. Magnetic Resonance in Medicine.
           doi: 10.1002/mrm.26059.
    .. [3] Manjon JV, Coupe P, Concha L, Buades A, Collins DL (2013)
           Diffusion Weighted Image Denoising Using Overcomplete Local
           PCA. PLoS ONE 8(9): e73021.
           https://doi.org/10.1371/journal.pone.0073021
    """
    if mask is None:
        # If mask is not specified, use the whole volume
        mask = np.ones_like(arr, dtype=bool)[..., 0]

    if out_dtype is None:
        out_dtype = arr.dtype

    # We retain float64 precision, iff the input is in this precision:
    if arr.dtype == np.float64:
        calc_dtype = np.float64
    # Otherwise, we'll calculate things in float32 (saving memory)
    else:
        calc_dtype = np.float32

    if not arr.ndim == 4:
        raise ValueError("PCA denoising can only be performed on 4D arrays.",
                         arr.shape)

    if pca_method.lower() == 'svd':
        is_svd = True
    elif pca_method.lower() == 'eig':
        is_svd = False
    else:
        raise ValueError("pca_method should be either 'eig' or 'svd'")

    if isinstance(patch_radius, int):
        patch_radius = np.ones(3, dtype=int) * patch_radius
    if len(patch_radius) != 3:
        raise ValueError("patch_radius should have length 3")
    else:
        patch_radius = np.asarray(patch_radius).astype(int)
    patch_size = 2 * patch_radius + 1

    if np.prod(patch_size) < arr.shape[-1]:
        e_s = "You asked for PCA denoising with a "
        e_s += "patch_radius of {0} ".format(patch_radius)
        e_s += "with total patch size of {0}".format(np.prod(patch_size))
        e_s += "for data with {0} directions. ".format(arr.shape[-1])
        e_s += "This would result in an ill-conditioned PCA matrix. "
        e_s += "Please increase the patch_radius."
        raise ValueError(e_s)

    if isinstance(sigma, np.ndarray):
        var = sigma ** 2
        if not sigma.shape == arr.shape[:-1]:
            e_s = "You provided a sigma array with a shape"
            e_s += "{0} for data with".format(sigma.shape)
            e_s += "shape {0}. Please provide a sigma array".format(arr.shape)
            e_s += " that matches the spatial dimensions of the data."
            raise ValueError(e_s)
    elif isinstance(sigma, (int, float)):
        var = sigma ** 2 * np.ones(arr.shape[:-1])

    dim = arr.shape[-1]
    if tau_factor is None:
        tau_factor = 1 + np.sqrt(dim / np.prod(patch_size))

    theta = np.zeros(arr.shape, dtype=calc_dtype)
    thetax = np.zeros(arr.shape, dtype=calc_dtype)

    if return_sigma is True and sigma is None:
        var = np.zeros(arr.shape[:-1], dtype=calc_dtype)
        thetavar = np.zeros(arr.shape[:-1], dtype=calc_dtype)

    # loop around and find the 3D patch for each direction at each pixel
    for k in range(patch_radius[2], arr.shape[2] - patch_radius[2]):
        for j in range(patch_radius[1], arr.shape[1] - patch_radius[1]):
            for i in range(patch_radius[0], arr.shape[0] - patch_radius[0]):
                # Shorthand for indexing variables:
                if not mask[i, j, k]:
                    continue
                ix1 = i - patch_radius[0]
                ix2 = i + patch_radius[0] + 1
                jx1 = j - patch_radius[1]
                jx2 = j + patch_radius[1] + 1
                kx1 = k - patch_radius[2]
                kx2 = k + patch_radius[2] + 1

                X = arr[ix1:ix2, jx1:jx2, kx1:kx2].reshape(
                                np.prod(patch_size), dim)
                # compute the mean and normalize
                M = np.mean(X, axis=0)
                # Upcast the dtype for precision in the SVD
                X = X - M

                if is_svd:
                    # PCA using an SVD
                    U, S, Vt = svd(X, *svd_args)[:3]
                    # Items in S are the eigenvalues, but in ascending order
                    # We invert the order (=> descending), square and normalize
                    # \lambda_i = s_i^2 / n
                    d = S[::-1] ** 2 / X.shape[0]
                    # Rows of Vt are eigenvectors, but also in ascending
                    # eigenvalue order:
                    W = Vt[::-1].T

                else:
                    # PCA using an Eigenvalue decomposition
                    C = np.transpose(X).dot(X)
                    C = C / X.shape[0]
                    [d, W] = eigh(C, turbo=True)

                if sigma is None:
                    # Random matrix theory
                    this_var, ncomps = _pca_classifier(d, np.prod(patch_size))
                else:
                    # Predefined variance
                    this_var = var[i, j, k]

                # Threshold by tau:
                tau = tau_factor ** 2 * this_var

                # Update ncomps according to tau_factor
                ncomps = np.sum(d < tau)
                W[:, :ncomps] = 0

                # This is equations 1 and 2 in Manjon 2013:
                Xest = X.dot(W).dot(W.T) + M
                Xest = Xest.reshape(patch_size[0],
                                    patch_size[1],
                                    patch_size[2], dim)
                # This is equation 3 in Manjon 2013:
                this_theta = 1.0 / (1.0 + dim - ncomps)
                theta[ix1:ix2, jx1:jx2, kx1:kx2] += this_theta
                thetax[ix1:ix2, jx1:jx2, kx1:kx2] += Xest * this_theta
                if return_sigma is True and sigma is None:
                    var[ix1:ix2, jx1:jx2, kx1:kx2] += this_var * this_theta
                    thetavar[ix1:ix2, jx1:jx2, kx1:kx2] += this_theta

    denoised_arr = thetax / theta
    denoised_arr.clip(min=0, out=denoised_arr)
    denoised_arr[mask == 0] = 0
    if return_sigma is True:
        if sigma is None:
            var = var / thetavar
            var[mask == 0] = 0
            return denoised_arr.astype(out_dtype), np.sqrt(var)
        else:
            return denoised_arr.astype(out_dtype), sigma
    else:
        return denoised_arr.astype(out_dtype)


def localpca(arr, sigma, mask=None, patch_radius=2, pca_method='eig',
             tau_factor=2.3, out_dtype=None):
    r""" Performs local PCA denoising according to Manjon et al. [1]_.

    Parameters
    ----------
    arr : 4D array
        Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
        are the diffusion gradient directions.
    sigma : float or 3D array
        Standard deviation of the noise estimated from the data.
    mask : 3D boolean array (optional)
        A mask with voxels that are true inside the brain and false outside of
        it. The function denoises within the true part and returns zeros
        outside of those voxels.
    patch_radius : int or 1D array (optional)
        The radius of the local patch to be taken around each voxel (in
        voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
    pca_method : 'eig' or 'svd' (optional)
        Use either eigenvalue decomposition (eig) or singular value
        decomposition (svd) for principal component analysis. The default
        method is 'eig' which is faster. However, occasionally 'svd' might be
        more accurate.
    tau_factor : float (optional)
        Thresholding of PCA eigenvalues is done by nulling out eigenvalues that
        are smaller than:

        .. math ::

                \tau = (\tau_{factor} \sigma)^2

        \tau_{factor} can be change to adjust the relationship between the
        noise standard deviation and the threshold \tau. If \tau_{factor} is
        set to None, it will be automatically calculated using the
        Marcenko-Pastur distribution [2]_.
        Default: 2.3 (according to [1]_)
    out_dtype : str or dtype (optional)
        The dtype for the output array. Default: output has the same dtype as
        the input.

    Returns
    -------
    denoised_arr : 4D array
        This is the denoised array of the same size as that of the input data,
        clipped to non-negative values

    References
    ----------
    .. [1] Manjon JV, Coupe P, Concha L, Buades A, Collins DL (2013)
           Diffusion Weighted Image Denoising Using Overcomplete Local
           PCA. PLoS ONE 8(9): e73021.
           https://doi.org/10.1371/journal.pone.0073021
    .. [2] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
           Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
           theory. Neuroimage 142:394-406.
           doi: 10.1016/j.neuroimage.2016.08.016
    """
    return genpca(arr, sigma=sigma, mask=mask, patch_radius=patch_radius,
                  pca_method=pca_method, tau_factor=tau_factor,
                  return_sigma=False, out_dtype=out_dtype)


def mppca(arr, mask=None, patch_radius=2, pca_method='eig',
          return_sigma=False, out_dtype=None):
    r"""Performs PCA-based denoising using the Marcenko-Pastur
    distribution [1]_.

    Parameters
    ----------
    arr : 4D array
        Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
        are the diffusion gradient directions.
    mask : 3D boolean array (optional)
        A mask with voxels that are true inside the brain and false outside of
        it. The function denoises within the true part and returns zeros
        outside of those voxels.
    patch_radius : int or 1D array (optional)
        The radius of the local patch to be taken around each voxel (in
        voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
    pca_method : 'eig' or 'svd' (optional)
        Use either eigenvalue decomposition (eig) or singular value
        decomposition (svd) for principal component analysis. The default
        method is 'eig' which is faster. However, occasionally 'svd' might be
        more accurate.
    return_sigma : bool (optional)
        If true, a noise standard deviation estimate based on the
        Marcenko-Pastur distribution is returned [2]_.
        Default: False.
    out_dtype : str or dtype (optional)
        The dtype for the output array. Default: output has the same dtype as
        the input.

    Returns
    -------
    denoised_arr : 4D array
        This is the denoised array of the same size as that of the input data,
        clipped to non-negative values
    sigma : 3D array (when return_sigma=True)
        Estimate of the spatial varying standard deviation of the noise

    References
    ----------
    .. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
           Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
           theory. Neuroimage 142:394-406.
           doi: 10.1016/j.neuroimage.2016.08.016
    .. [2] Veraart J, Fieremans E, Novikov DS. 2016. Diffusion MRI noise
           mapping using random matrix theory. Magnetic Resonance in Medicine.
           doi: 10.1002/mrm.26059.
    """
    return genpca(arr, sigma=None, mask=mask, patch_radius=patch_radius,
                  pca_method=pca_method, tau_factor=None,
                  return_sigma=return_sigma, out_dtype=out_dtype)