1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
import numpy as np
try:
from scipy.linalg.lapack import dgesvd as svd
svd_args = [1, 0]
# If you have an older version of scipy, we fall back
# on the standard scipy SVD API:
except ImportError:
from scipy.linalg import svd
svd_args = [False]
from scipy.linalg import eigh
def _pca_classifier(L, nvoxels):
""" Classifies which PCA eigenvalues are related to noise and estimates the
noise variance
Parameters
----------
L : array (n,)
Array containing the PCA eigenvalues in ascending order.
nvoxels : int
Number of voxels used to compute L
Returns
-------
var : float
Estimation of the noise variance
ncomps : int
Number of eigenvalues related to noise
Notes
-----
This is based on the algorithm described in [1]_.
References
----------
.. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
theory. Neuroimage 142:394-406.
doi: 10.1016/j.neuroimage.2016.08.016
"""
var = np.mean(L)
c = L.size - 1
r = L[c] - L[0] - 4 * np.sqrt((c + 1.0) / nvoxels) * var
while r > 0:
var = np.mean(L[:c])
c = c - 1
r = L[c] - L[0] - 4 * np.sqrt((c + 1.0) / nvoxels) * var
ncomps = c + 1
return var, ncomps
def genpca(arr, sigma=None, mask=None, patch_radius=2, pca_method='eig',
tau_factor=None, return_sigma=False, out_dtype=None):
r"""General function to perform PCA-based denoising of diffusion datasets.
Parameters
----------
arr : 4D array
Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
are the diffusion gradient directions.
sigma : float or 3D array (optional)
Standard deviation of the noise estimated from the data. If no sigma
is given, this will be estimated based on random matrix theory
[1]_,[2]_
mask : 3D boolean array (optional)
A mask with voxels that are true inside the brain and false outside of
it. The function denoises within the true part and returns zeros
outside of those voxels.
patch_radius : int or 1D array (optional)
The radius of the local patch to be taken around each voxel (in
voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
pca_method : 'eig' or 'svd' (optional)
Use either eigenvalue decomposition (eig) or singular value
decomposition (svd) for principal component analysis. The default
method is 'eig' which is faster. However, occasionally 'svd' might be
more accurate.
tau_factor : float (optional)
Thresholding of PCA eigenvalues is done by nulling out eigenvalues that
are smaller than:
.. math ::
\tau = (\tau_{factor} \sigma)^2
\tau_{factor} can be set to a predefined values (e.g. \tau_{factor} =
2.3 [3]_), or automatically calculated using random matrix theory
(in case that \tau_{factor} is set to None).
Default: None.
return_sigma : bool (optional)
If true, the Standard deviation of the noise will be returned.
Default: False.
out_dtype : str or dtype (optional)
The dtype for the output array. Default: output has the same dtype as
the input.
Returns
-------
denoised_arr : 4D array
This is the denoised array of the same size as that of the input data,
clipped to non-negative values
References
----------
.. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
theory. Neuroimage 142:394-406.
doi: 10.1016/j.neuroimage.2016.08.016
.. [2] Veraart J, Fieremans E, Novikov DS. 2016. Diffusion MRI noise
mapping using random matrix theory. Magnetic Resonance in Medicine.
doi: 10.1002/mrm.26059.
.. [3] Manjon JV, Coupe P, Concha L, Buades A, Collins DL (2013)
Diffusion Weighted Image Denoising Using Overcomplete Local
PCA. PLoS ONE 8(9): e73021.
https://doi.org/10.1371/journal.pone.0073021
"""
if mask is None:
# If mask is not specified, use the whole volume
mask = np.ones_like(arr, dtype=bool)[..., 0]
if out_dtype is None:
out_dtype = arr.dtype
# We retain float64 precision, iff the input is in this precision:
if arr.dtype == np.float64:
calc_dtype = np.float64
# Otherwise, we'll calculate things in float32 (saving memory)
else:
calc_dtype = np.float32
if not arr.ndim == 4:
raise ValueError("PCA denoising can only be performed on 4D arrays.",
arr.shape)
if pca_method.lower() == 'svd':
is_svd = True
elif pca_method.lower() == 'eig':
is_svd = False
else:
raise ValueError("pca_method should be either 'eig' or 'svd'")
if isinstance(patch_radius, int):
patch_radius = np.ones(3, dtype=int) * patch_radius
if len(patch_radius) != 3:
raise ValueError("patch_radius should have length 3")
else:
patch_radius = np.asarray(patch_radius).astype(int)
patch_size = 2 * patch_radius + 1
if np.prod(patch_size) < arr.shape[-1]:
e_s = "You asked for PCA denoising with a "
e_s += "patch_radius of {0} ".format(patch_radius)
e_s += "with total patch size of {0}".format(np.prod(patch_size))
e_s += "for data with {0} directions. ".format(arr.shape[-1])
e_s += "This would result in an ill-conditioned PCA matrix. "
e_s += "Please increase the patch_radius."
raise ValueError(e_s)
if isinstance(sigma, np.ndarray):
var = sigma ** 2
if not sigma.shape == arr.shape[:-1]:
e_s = "You provided a sigma array with a shape"
e_s += "{0} for data with".format(sigma.shape)
e_s += "shape {0}. Please provide a sigma array".format(arr.shape)
e_s += " that matches the spatial dimensions of the data."
raise ValueError(e_s)
elif isinstance(sigma, (int, float)):
var = sigma ** 2 * np.ones(arr.shape[:-1])
dim = arr.shape[-1]
if tau_factor is None:
tau_factor = 1 + np.sqrt(dim / np.prod(patch_size))
theta = np.zeros(arr.shape, dtype=calc_dtype)
thetax = np.zeros(arr.shape, dtype=calc_dtype)
if return_sigma is True and sigma is None:
var = np.zeros(arr.shape[:-1], dtype=calc_dtype)
thetavar = np.zeros(arr.shape[:-1], dtype=calc_dtype)
# loop around and find the 3D patch for each direction at each pixel
for k in range(patch_radius[2], arr.shape[2] - patch_radius[2]):
for j in range(patch_radius[1], arr.shape[1] - patch_radius[1]):
for i in range(patch_radius[0], arr.shape[0] - patch_radius[0]):
# Shorthand for indexing variables:
if not mask[i, j, k]:
continue
ix1 = i - patch_radius[0]
ix2 = i + patch_radius[0] + 1
jx1 = j - patch_radius[1]
jx2 = j + patch_radius[1] + 1
kx1 = k - patch_radius[2]
kx2 = k + patch_radius[2] + 1
X = arr[ix1:ix2, jx1:jx2, kx1:kx2].reshape(
np.prod(patch_size), dim)
# compute the mean and normalize
M = np.mean(X, axis=0)
# Upcast the dtype for precision in the SVD
X = X - M
if is_svd:
# PCA using an SVD
U, S, Vt = svd(X, *svd_args)[:3]
# Items in S are the eigenvalues, but in ascending order
# We invert the order (=> descending), square and normalize
# \lambda_i = s_i^2 / n
d = S[::-1] ** 2 / X.shape[0]
# Rows of Vt are eigenvectors, but also in ascending
# eigenvalue order:
W = Vt[::-1].T
else:
# PCA using an Eigenvalue decomposition
C = np.transpose(X).dot(X)
C = C / X.shape[0]
[d, W] = eigh(C, turbo=True)
if sigma is None:
# Random matrix theory
this_var, ncomps = _pca_classifier(d, np.prod(patch_size))
else:
# Predefined variance
this_var = var[i, j, k]
# Threshold by tau:
tau = tau_factor ** 2 * this_var
# Update ncomps according to tau_factor
ncomps = np.sum(d < tau)
W[:, :ncomps] = 0
# This is equations 1 and 2 in Manjon 2013:
Xest = X.dot(W).dot(W.T) + M
Xest = Xest.reshape(patch_size[0],
patch_size[1],
patch_size[2], dim)
# This is equation 3 in Manjon 2013:
this_theta = 1.0 / (1.0 + dim - ncomps)
theta[ix1:ix2, jx1:jx2, kx1:kx2] += this_theta
thetax[ix1:ix2, jx1:jx2, kx1:kx2] += Xest * this_theta
if return_sigma is True and sigma is None:
var[ix1:ix2, jx1:jx2, kx1:kx2] += this_var * this_theta
thetavar[ix1:ix2, jx1:jx2, kx1:kx2] += this_theta
denoised_arr = thetax / theta
denoised_arr.clip(min=0, out=denoised_arr)
denoised_arr[mask == 0] = 0
if return_sigma is True:
if sigma is None:
var = var / thetavar
var[mask == 0] = 0
return denoised_arr.astype(out_dtype), np.sqrt(var)
else:
return denoised_arr.astype(out_dtype), sigma
else:
return denoised_arr.astype(out_dtype)
def localpca(arr, sigma, mask=None, patch_radius=2, pca_method='eig',
tau_factor=2.3, out_dtype=None):
r""" Performs local PCA denoising according to Manjon et al. [1]_.
Parameters
----------
arr : 4D array
Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
are the diffusion gradient directions.
sigma : float or 3D array
Standard deviation of the noise estimated from the data.
mask : 3D boolean array (optional)
A mask with voxels that are true inside the brain and false outside of
it. The function denoises within the true part and returns zeros
outside of those voxels.
patch_radius : int or 1D array (optional)
The radius of the local patch to be taken around each voxel (in
voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
pca_method : 'eig' or 'svd' (optional)
Use either eigenvalue decomposition (eig) or singular value
decomposition (svd) for principal component analysis. The default
method is 'eig' which is faster. However, occasionally 'svd' might be
more accurate.
tau_factor : float (optional)
Thresholding of PCA eigenvalues is done by nulling out eigenvalues that
are smaller than:
.. math ::
\tau = (\tau_{factor} \sigma)^2
\tau_{factor} can be change to adjust the relationship between the
noise standard deviation and the threshold \tau. If \tau_{factor} is
set to None, it will be automatically calculated using the
Marcenko-Pastur distribution [2]_.
Default: 2.3 (according to [1]_)
out_dtype : str or dtype (optional)
The dtype for the output array. Default: output has the same dtype as
the input.
Returns
-------
denoised_arr : 4D array
This is the denoised array of the same size as that of the input data,
clipped to non-negative values
References
----------
.. [1] Manjon JV, Coupe P, Concha L, Buades A, Collins DL (2013)
Diffusion Weighted Image Denoising Using Overcomplete Local
PCA. PLoS ONE 8(9): e73021.
https://doi.org/10.1371/journal.pone.0073021
.. [2] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
theory. Neuroimage 142:394-406.
doi: 10.1016/j.neuroimage.2016.08.016
"""
return genpca(arr, sigma=sigma, mask=mask, patch_radius=patch_radius,
pca_method=pca_method, tau_factor=tau_factor,
return_sigma=False, out_dtype=out_dtype)
def mppca(arr, mask=None, patch_radius=2, pca_method='eig',
return_sigma=False, out_dtype=None):
r"""Performs PCA-based denoising using the Marcenko-Pastur
distribution [1]_.
Parameters
----------
arr : 4D array
Array of data to be denoised. The dimensions are (X, Y, Z, N), where N
are the diffusion gradient directions.
mask : 3D boolean array (optional)
A mask with voxels that are true inside the brain and false outside of
it. The function denoises within the true part and returns zeros
outside of those voxels.
patch_radius : int or 1D array (optional)
The radius of the local patch to be taken around each voxel (in
voxels). Default: 2 (denoise in blocks of 5x5x5 voxels).
pca_method : 'eig' or 'svd' (optional)
Use either eigenvalue decomposition (eig) or singular value
decomposition (svd) for principal component analysis. The default
method is 'eig' which is faster. However, occasionally 'svd' might be
more accurate.
return_sigma : bool (optional)
If true, a noise standard deviation estimate based on the
Marcenko-Pastur distribution is returned [2]_.
Default: False.
out_dtype : str or dtype (optional)
The dtype for the output array. Default: output has the same dtype as
the input.
Returns
-------
denoised_arr : 4D array
This is the denoised array of the same size as that of the input data,
clipped to non-negative values
sigma : 3D array (when return_sigma=True)
Estimate of the spatial varying standard deviation of the noise
References
----------
.. [1] Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers,
Fieremans E, 2016. Denoising of Diffusion MRI using random matrix
theory. Neuroimage 142:394-406.
doi: 10.1016/j.neuroimage.2016.08.016
.. [2] Veraart J, Fieremans E, Novikov DS. 2016. Diffusion MRI noise
mapping using random matrix theory. Magnetic Resonance in Medicine.
doi: 10.1002/mrm.26059.
"""
return genpca(arr, sigma=None, mask=mask, patch_radius=patch_radius,
pca_method=pca_method, tau_factor=None,
return_sigma=return_sigma, out_dtype=out_dtype)
|