[go: up one dir, main page]

File: coop_gen.py

package info (click to toggle)
deap 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,500 kB
  • sloc: python: 8,558; ansic: 1,054; cpp: 592; makefile: 94; sh: 5
file content (130 lines) | stat: -rw-r--r-- 4,886 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#    This file is part of DEAP.
#
#    DEAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    DEAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

"""This example contains the generalizing test from *Potter, M. and De Jong,
K., 2001, Cooperative Coevolution: An Architecture for Evolving Co-adapted
Subcomponents.* section 4.2.2. Varying the *NUM_SPECIES* in :math:`[1, \ldots,
4]` will produce the results for one to four species respectively.
"""

import random
try:
    import matplotlib.pyplot as plt
except ImportError:
    plt = False

import numpy

from deap import algorithms
from deap import tools

import coop_base

IND_SIZE = coop_base.IND_SIZE
SPECIES_SIZE = coop_base.SPECIES_SIZE
NUM_SPECIES = 4
TARGET_SIZE = 30

noise =      "*##*###*###*****##*##****#*##*###*#****##******##*#**#*#**######"
schematas = ("1##1###1###11111##1##1111#1##1###1#1111##111111##1#11#1#11######",
             "1##1###1###11111##1##1000#0##0###0#0000##000000##0#00#0#00######",
             "0##0###0###00000##0##0000#0##0###0#0000##001111##1#11#1#11######")

toolbox = coop_base.toolbox
if plt:
    # This will allow to plot the match strength of every target schemata
    toolbox.register("evaluate_nonoise", coop_base.matchSetStrengthNoNoise)

def main(extended=True, verbose=True):
    target_set = []
    
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    logbook = tools.Logbook()
    logbook.header = "gen", "species", "evals", "std", "min", "avg", "max"
    
    ngen = 150
    g = 0
    
    for i in range(len(schematas)):
        size = int(TARGET_SIZE/len(schematas))
        target_set.extend(toolbox.target_set(schematas[i], size))
    
    species = [toolbox.species() for _ in range(NUM_SPECIES)]
    
    # Init with random a representative for each species
    representatives = [random.choice(s) for s in species]
    
    if plt and extended:
        # We must save the match strength to plot them
        t1, t2, t3 = list(), list(), list()
    
    while g < ngen:
        # Initialize a container for the next generation representatives
        next_repr = [None] * len(species)
        for i, s in enumerate(species):
            # Vary the species individuals
            s = algorithms.varAnd(s, toolbox, 0.6, 1.0)
            
            # Get the representatives excluding the current species
            r = representatives[:i] + representatives[i+1:]
            for ind in s:
                ind.fitness.values = toolbox.evaluate([ind] + r, target_set)
                
            record = stats.compile(s)
            logbook.record(gen=g, species=i, evals=len(s), **record)
            
            if verbose: 
                print(logbook.stream)
            
            # Select the individuals
            species[i] = toolbox.select(s, len(s))  # Tournament selection
            next_repr[i] = toolbox.get_best(s)[0]   # Best selection
        
            g += 1
            
            if plt and extended:
                # Compute the match strength without noise for the
                # representatives on the three schematas
                t1.append(toolbox.evaluate_nonoise(representatives,
                    toolbox.target_set(schematas[0], 1), noise)[0])
                t2.append(toolbox.evaluate_nonoise(representatives,
                    toolbox.target_set(schematas[1], 1), noise)[0])
                t3.append(toolbox.evaluate_nonoise(representatives,
                    toolbox.target_set(schematas[2], 1), noise)[0])
            
        representatives = next_repr
    if extended:
        for r in representatives:
            # print individuals without noise
            print("".join(str(x) for x, y in zip(r, noise) if y == "*"))
    
    if plt and extended:
        # Do the final plotting
        plt.plot(t1, '-', color="k", label="Target 1")
        plt.plot(t2, '--', color="k", label="Target 2")
        plt.plot(t3, ':', color="k", label="Target 3")
        plt.legend(loc="lower right")
        plt.axis([0, ngen, 0, max(max(t1), max(t2), max(t3)) + 1])
        plt.xlabel("Generations")
        plt.ylabel("Number of matched bits")
        plt.show()
    
if __name__ == "__main__":
    main()