[go: up one dir, main page]

File: algo.rst

package info (click to toggle)
deap 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,500 kB
  • sloc: python: 8,558; ansic: 1,054; cpp: 592; makefile: 94; sh: 5
file content (46 lines) | stat: -rw-r--r-- 1,632 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Algorithms
==========

.. automodule:: deap.algorithms
   

Complete Algorithms
-------------------
These are complete boxed algorithms that are somewhat limited to the very
basic evolutionary computation concepts. All algorithms accept, in addition to
their arguments, an initialized :class:`~deap.tools.Statistics` object to
maintain stats of the evolution, an initialized
:class:`~deap.tools.HallOfFame` to hold the best individual(s) to appear in
the population, and a boolean `verbose` to specify whether to
log what is happening during the evolution or not.

.. autofunction:: deap.algorithms.eaSimple(population, toolbox, cxpb, mutpb, ngen[, stats, halloffame, verbose])

.. autofunction:: deap.algorithms.eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])

.. autofunction:: deap.algorithms.eaMuCommaLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])

.. autofunction:: deap.algorithms.eaGenerateUpdate(toolbox, ngen[, stats, halloffame, verbose])

Variations
----------
Variations are smaller parts of the algorithms that can be used separately to
build more complex algorithms.

.. autofunction:: deap.algorithms.varAnd

.. autofunction:: deap.algorithms.varOr

Covariance Matrix Adaptation Evolution Strategy
===============================================

.. automodule:: deap.cma

.. autoclass:: deap.cma.Strategy(centroid, sigma[, **kargs])
   :members:

.. autoclass:: deap.cma.StrategyOnePlusLambda(parent, sigma[, **kargs])
   :members:

.. autoclass:: deap.cma.StrategyMultiObjective(population, sigma[, **kargs])
   :members: