1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
Algorithms
==========
.. automodule:: deap.algorithms
Complete Algorithms
-------------------
These are complete boxed algorithms that are somewhat limited to the very
basic evolutionary computation concepts. All algorithms accept, in addition to
their arguments, an initialized :class:`~deap.tools.Statistics` object to
maintain stats of the evolution, an initialized
:class:`~deap.tools.HallOfFame` to hold the best individual(s) to appear in
the population, and a boolean `verbose` to specify whether to
log what is happening during the evolution or not.
.. autofunction:: deap.algorithms.eaSimple(population, toolbox, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaMuCommaLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaGenerateUpdate(toolbox, ngen[, stats, halloffame, verbose])
Variations
----------
Variations are smaller parts of the algorithms that can be used separately to
build more complex algorithms.
.. autofunction:: deap.algorithms.varAnd
.. autofunction:: deap.algorithms.varOr
Covariance Matrix Adaptation Evolution Strategy
===============================================
.. automodule:: deap.cma
.. autoclass:: deap.cma.Strategy(centroid, sigma[, **kargs])
:members:
.. autoclass:: deap.cma.StrategyOnePlusLambda(parent, sigma[, **kargs])
:members:
.. autoclass:: deap.cma.StrategyMultiObjective(population, sigma[, **kargs])
:members:
|