[go: up one dir, main page]

File: test_pickle.py

package info (click to toggle)
deap 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,500 kB
  • sloc: python: 8,558; ansic: 1,054; cpp: 592; makefile: 94; sh: 5
file content (159 lines) | stat: -rw-r--r-- 6,760 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

import sys
import unittest
import array
import pickle
import operator
import platform

import numpy

from deap import creator
from deap import base
from deap import gp
from deap import tools

def func():
    return "True"

class Pickling(unittest.TestCase):

    def setUp(self):
        creator.create("FitnessMax", base.Fitness, weights=(1.0,))
        creator.create("IndList", list, fitness=creator.FitnessMax)
        creator.create("IndArray", array.array,  typecode='f', fitness=creator.FitnessMax)
        creator.create("IndNDArray", numpy.ndarray,  typecode='f', fitness=creator.FitnessMax)
        creator.create("IndTree", gp.PrimitiveTree, fitness=creator.FitnessMax)
        self.toolbox = base.Toolbox()
        self.toolbox.register("func", func)
        self.toolbox.register("lambda_func", lambda: "True")

    def tearDown(self):
        del creator.FitnessMax
        del creator.IndList
        del creator.IndArray
        del creator.IndNDArray
        del creator.IndTree

    def test_pickle_fitness(self):
        fitness = creator.FitnessMax()
        fitness.values = (1.0,)
        fitness_s = pickle.dumps(fitness)
        fitness_l = pickle.loads(fitness_s)
        self.assertEqual(fitness, fitness_l, "Unpickled fitness != pickled fitness")

    def test_pickle_ind_list(self):
        ind = creator.IndList([1.0, 2.0, 3.0])
        ind.fitness.values = (4.0,)
        ind_s = pickle.dumps(ind)
        ind_l = pickle.loads(ind_s)
        self.assertEqual(ind, ind_l, "Unpickled individual list != pickled individual list")
        self.assertEqual(ind.fitness, ind_l.fitness, "Unpickled individual fitness != pickled individual fitness")

    def test_pickle_ind_array(self):
        ind = creator.IndArray([1.0, 2.0, 3.0])
        ind.fitness.values = (4.0,)
        ind_s = pickle.dumps(ind)
        ind_l = pickle.loads(ind_s)
        self.assertEqual(ind, ind_l, "Unpickled individual array != pickled individual array")
        self.assertEqual(ind.fitness, ind_l.fitness, "Unpickled individual fitness != pickled individual fitness")

    # @unittest.skipIf(platform.python_implementation() == "PyPy", "PyPy support for pickling ndarrays is very unstable.")
    def test_pickle_ind_ndarray(self):
        ind = creator.IndNDArray([1.0, 2.0, 3.0])
        ind.fitness.values = (4.0,)
        ind_s = pickle.dumps(ind)
        ind_l = pickle.loads(ind_s)
        self.assertTrue(all(ind == ind_l), "Unpickled individual numpy.ndarray != pickled individual numpy.ndarray")
        self.assertEqual(ind.fitness, ind_l.fitness, "Unpickled individual fitness != pickled individual fitness")

    def test_pickle_tree_input(self):
        pset = gp.PrimitiveSetTyped("MAIN", [int], int, "IN")
        pset.addPrimitive(operator.add, [int, int], int)

        expr = gp.genFull(pset, min_=1, max_=1)
        ind = creator.IndTree(expr)
        ind.fitness.values = (1.0,)
        ind_s = pickle.dumps(ind, pickle.HIGHEST_PROTOCOL)
        ind_l = pickle.loads(ind_s)
        msg =  "Unpickled individual %s != pickled individual %s" % (str(ind), str(ind_l))
        self.assertEqual(ind, ind_l, msg)
        msg =  "Unpickled fitness %s != pickled fitness %s" % (str(ind.fitness), str(ind_l.fitness))
        self.assertEqual(ind.fitness, ind_l.fitness, msg)

    def test_pickle_tree_term(self):
        pset = gp.PrimitiveSetTyped("MAIN", [], int, "IN")
        pset.addPrimitive(operator.add, [int, int], int)
        pset.addTerminal(1, int)

        expr = gp.genFull(pset, min_=1, max_=1)
        ind = creator.IndTree(expr)
        ind.fitness.values = (1.0,)
        ind_s = pickle.dumps(ind, pickle.HIGHEST_PROTOCOL)
        ind_l = pickle.loads(ind_s)
        msg =  "Unpickled individual %s != pickled individual %s" % (str(ind), str(ind_l))
        self.assertEqual(ind, ind_l, msg)
        msg =  "Unpickled fitness %s != pickled fitness %s" % (str(ind.fitness), str(ind_l.fitness))
        self.assertEqual(ind.fitness, ind_l.fitness, msg)

    def test_pickle_tree_ephemeral(self):
        pset = gp.PrimitiveSetTyped("MAIN", [], int, "IN")
        pset.addPrimitive(operator.add, [int, int], int)
        pset.addEphemeralConstant("E1", lambda: 2, int)

        expr = gp.genFull(pset, min_=1, max_=1)
        ind = creator.IndTree(expr)
        ind.fitness.values = (1.0,)
        ind_s = pickle.dumps(ind, pickle.HIGHEST_PROTOCOL)
        ind_l = pickle.loads(ind_s)
        msg =  "Unpickled individual %s != pickled individual %s" % (str(ind), str(ind_l))
        self.assertEqual(ind, ind_l, msg)
        msg =  "Unpickled fitness %s != pickled fitness %s" % (str(ind.fitness), str(ind_l.fitness))
        self.assertEqual(ind.fitness, ind_l.fitness, msg)

    def test_pickle_population(self):
        ind1 = creator.IndList([1.0,2.0,3.0])
        ind1.fitness.values = (1.0,)
        ind2 = creator.IndList([4.0,5.0,6.0])
        ind2.fitness.values = (2.0,)
        ind3 = creator.IndList([7.0,8.0,9.0])
        ind3.fitness.values = (3.0,)

        pop = [ind1, ind2, ind3]

        pop_s = pickle.dumps(pop)
        pop_l = pickle.loads(pop_s)

        self.assertEqual(pop[0], pop_l[0], "Unpickled individual list != pickled individual list")
        self.assertEqual(pop[0].fitness, pop_l[0].fitness, "Unpickled individual fitness != pickled individual fitness")
        self.assertEqual(pop[1], pop_l[1], "Unpickled individual list != pickled individual list")
        self.assertEqual(pop[1].fitness, pop_l[1].fitness, "Unpickled individual fitness != pickled individual fitness")
        self.assertEqual(pop[2], pop_l[2], "Unpickled individual list != pickled individual list")
        self.assertEqual(pop[2].fitness, pop_l[2].fitness, "Unpickled individual fitness != pickled individual fitness")

    
    # @unittest.skipIf(platform.python_implementation() == "PyPy", "PyPy support for pickling ndarrays (thus stats) is very unstable.")
    def test_pickle_logbook(self):
        stats = tools.Statistics()
        logbook = tools.Logbook()

        stats.register("mean", numpy.mean)
        record = stats.compile([1,2,3,4,5,6,8,9,10])
        logbook.record(**record)

        logbook_s = pickle.dumps(logbook)
        logbook_r = pickle.loads(logbook_s)

        self.assertEqual(logbook, logbook_r, "Unpickled logbook != pickled logbook")

    @unittest.skipIf(sys.version_info < (2, 7), "Skipping test because Python version < 2.7 does not pickle partials.")
    def test_pickle_partial(self):
        func_s = pickle.dumps(self.toolbox.func)
        func_l = pickle.loads(func_s)

        self.assertEqual(self.toolbox.func(), func_l())


if __name__ == "__main__":
    suite = unittest.TestLoader().loadTestsFromTestCase(Pickling)
    unittest.TextTestRunner(verbosity=2).run(suite)