[go: up one dir, main page]

File: AltosQuaternion.java

package info (click to toggle)
altos 1.9-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 67,272 kB
  • sloc: ansic: 90,607; java: 39,048; makefile: 6,591; sh: 3,008; xml: 1,972; pascal: 1,597
file content (170 lines) | stat: -rw-r--r-- 4,451 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 * Copyright © 2014 Keith Packard <keithp@keithp.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 */

package org.altusmetrum.altoslib_13;

public class AltosQuaternion {
	double	r;		/* real bit */
	double	x, y, z;	/* imaginary bits */

	/* Multiply by b */
	public AltosQuaternion multiply(AltosQuaternion b) {
		return new AltosQuaternion(
			this.r * b.r - this.x * b.x - this.y * b.y - this.z * b.z,
			this.r * b.x + this.x * b.r + this.y * b.z - this.z * b.y,
			this.r * b.y - this.x * b.z + this.y * b.r + this.z * b.x,
			this.r * b.z + this.x * b.y - this.y * b.x + this.z * b.r);
	}

	public AltosQuaternion conjugate() {
		return new AltosQuaternion(this.r,
					   -this.x,
					   -this.y,
					   -this.z);
	}

	public double normal() {
		return Math.sqrt(this.r * this.r +
				 this.x * this.x +
				 this.y * this.y +
				 this.z * this.z);
	}

	/* Scale by a real value */
	public AltosQuaternion scale(double b) {
		return new AltosQuaternion(this.r * b,
					   this.x * b,
					   this.y * b,
					   this.z * b);
	}

	/* Divide by the length to end up with a quaternion of length 1 */
	public AltosQuaternion normalize() {
		double	n = normal();
		if (n <= 0)
			return this;
		return scale(1/n);
	}

	/* dot product */
	public double dot(AltosQuaternion b) {
		return (this.r * b.r +
			this.x * b.x +
			this.y * b.y +
			this.z * b.z);
	}

	/* Rotate 'this' by 'b' */
	public AltosQuaternion rotate(AltosQuaternion b) {
		return (b.multiply(this)).multiply(b.conjugate());
	}

	/* Given two vectors (this and b), compute a quaternion
	 * representing the rotation between them
	 */
	public AltosQuaternion vectors_to_rotation(AltosQuaternion b) {
		/*
		 * The cross product will point orthogonally to the two
		 * vectors, forming our rotation axis. The length will be
		 * sin(θ), so these values are already multiplied by that.
		 */

		double x = this.y * b.z - this.z * b.y;
		double y = this.z * b.x - this.x * b.z;
		double z = this.x * b.y - this.y * b.x;

		double s_2 = x*x + y*y + z*z;
		double s = Math.sqrt(s_2);

		/* cos(θ) = a · b / (|a| |b|).
		 *
		 * a and b are both unit vectors, so the divisor is one
		 */
		double c = this.x*b.x + this.y*b.y + this.z*b.z;

		double c_half = Math.sqrt ((1 + c) / 2);
		double s_half = Math.sqrt ((1 - c) / 2);

		/*
		 * Divide out the sine factor from the
		 * cross product, then multiply in the
		 * half sine factor needed for the quaternion
		 */
		double s_scale = s_half / s;

		AltosQuaternion r = new AltosQuaternion(c_half,
							x * s_scale,
							y * s_scale,
							z * s_scale);
		return r.normalize();
	}

	public AltosQuaternion(double r, double x, double y, double z) {
		this.r = r;
		this.x = x;
		this.y = y;
		this.z = z;
	}

	public AltosQuaternion(AltosQuaternion q) {
		r = q.r;
		x = q.x;
		y = q.y;
		z = q.z;
	}

	public AltosQuaternion() {
		r = 1;
		x = 0;
		y = 0;
		z = 0;
	}

	static public AltosQuaternion vector(double x, double y, double z) {
		return new AltosQuaternion(0, x, y, z);
	}

	static public AltosQuaternion rotation(double x, double y, double z,
					       double s, double c) {
		return new AltosQuaternion(c,
					   s*x,
					   s*y,
					   s*z);
	}

	static public AltosQuaternion zero_rotation() {
		return new AltosQuaternion(1, 0, 0, 0);
	}

	static public AltosQuaternion euler(double x, double y, double z) {

		/* Halve the euler angles */
		x = x / 2.0;
		y = y / 2.0;
		z = z / 2.0;

		double	s_x = Math.sin(x), c_x = Math.cos(x);
		double	s_y = Math.sin(y), c_y = Math.cos(y);
		double	s_z = Math.sin(z), c_z = Math.cos(z);;

		return new AltosQuaternion(c_x * c_y * c_z + s_x * s_y * s_z,
					   s_x * c_y * c_z - c_x * s_y * s_z,
					   c_x * s_y * c_z + s_x * c_y * s_z,
					   c_x * c_y * s_z - s_x * s_y * c_z);
	}
}