1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*
* Copyright © 2014 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
package org.altusmetrum.altoslib_13;
public class AltosQuaternion {
double r; /* real bit */
double x, y, z; /* imaginary bits */
/* Multiply by b */
public AltosQuaternion multiply(AltosQuaternion b) {
return new AltosQuaternion(
this.r * b.r - this.x * b.x - this.y * b.y - this.z * b.z,
this.r * b.x + this.x * b.r + this.y * b.z - this.z * b.y,
this.r * b.y - this.x * b.z + this.y * b.r + this.z * b.x,
this.r * b.z + this.x * b.y - this.y * b.x + this.z * b.r);
}
public AltosQuaternion conjugate() {
return new AltosQuaternion(this.r,
-this.x,
-this.y,
-this.z);
}
public double normal() {
return Math.sqrt(this.r * this.r +
this.x * this.x +
this.y * this.y +
this.z * this.z);
}
/* Scale by a real value */
public AltosQuaternion scale(double b) {
return new AltosQuaternion(this.r * b,
this.x * b,
this.y * b,
this.z * b);
}
/* Divide by the length to end up with a quaternion of length 1 */
public AltosQuaternion normalize() {
double n = normal();
if (n <= 0)
return this;
return scale(1/n);
}
/* dot product */
public double dot(AltosQuaternion b) {
return (this.r * b.r +
this.x * b.x +
this.y * b.y +
this.z * b.z);
}
/* Rotate 'this' by 'b' */
public AltosQuaternion rotate(AltosQuaternion b) {
return (b.multiply(this)).multiply(b.conjugate());
}
/* Given two vectors (this and b), compute a quaternion
* representing the rotation between them
*/
public AltosQuaternion vectors_to_rotation(AltosQuaternion b) {
/*
* The cross product will point orthogonally to the two
* vectors, forming our rotation axis. The length will be
* sin(θ), so these values are already multiplied by that.
*/
double x = this.y * b.z - this.z * b.y;
double y = this.z * b.x - this.x * b.z;
double z = this.x * b.y - this.y * b.x;
double s_2 = x*x + y*y + z*z;
double s = Math.sqrt(s_2);
/* cos(θ) = a · b / (|a| |b|).
*
* a and b are both unit vectors, so the divisor is one
*/
double c = this.x*b.x + this.y*b.y + this.z*b.z;
double c_half = Math.sqrt ((1 + c) / 2);
double s_half = Math.sqrt ((1 - c) / 2);
/*
* Divide out the sine factor from the
* cross product, then multiply in the
* half sine factor needed for the quaternion
*/
double s_scale = s_half / s;
AltosQuaternion r = new AltosQuaternion(c_half,
x * s_scale,
y * s_scale,
z * s_scale);
return r.normalize();
}
public AltosQuaternion(double r, double x, double y, double z) {
this.r = r;
this.x = x;
this.y = y;
this.z = z;
}
public AltosQuaternion(AltosQuaternion q) {
r = q.r;
x = q.x;
y = q.y;
z = q.z;
}
public AltosQuaternion() {
r = 1;
x = 0;
y = 0;
z = 0;
}
static public AltosQuaternion vector(double x, double y, double z) {
return new AltosQuaternion(0, x, y, z);
}
static public AltosQuaternion rotation(double x, double y, double z,
double s, double c) {
return new AltosQuaternion(c,
s*x,
s*y,
s*z);
}
static public AltosQuaternion zero_rotation() {
return new AltosQuaternion(1, 0, 0, 0);
}
static public AltosQuaternion euler(double x, double y, double z) {
/* Halve the euler angles */
x = x / 2.0;
y = y / 2.0;
z = z / 2.0;
double s_x = Math.sin(x), c_x = Math.cos(x);
double s_y = Math.sin(y), c_y = Math.cos(y);
double s_z = Math.sin(z), c_z = Math.cos(z);;
return new AltosQuaternion(c_x * c_y * c_z + s_x * s_y * s_z,
s_x * c_y * c_z - c_x * s_y * s_z,
c_x * s_y * c_z + s_x * c_y * s_z,
c_x * c_y * s_z - s_x * s_y * c_z);
}
}
|