[go: up one dir, main page]

File: hebbian.cc

package info (click to toggle)
achilles 2-13
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 684 kB
  • sloc: sh: 2,600; cpp: 2,069; xml: 25; makefile: 7
file content (219 lines) | stat: -rw-r--r-- 5,681 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* 

Copyright (C) 2000 Matthew Danish

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

// Hebbian neural network simulator
// This is a stand-alone class btw :)
using namespace std;
#include<iostream>
#include<time.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<vector>
#include<math.h>
#include"hebbian.h"



// Constructor for Class NeuralNet
// Creates a neural network with n inner neurodes, n_layers layers,
// ins number of inputs neurodes, and outs number of output neurodes
// td is the topological distortion factor, the chance that a given
// input to a given neurode will be randomly mapped
// if it is 1, all inputs will be randomly mapped, if it is 0, no inputs
// will be randomly mapped.

NeuralNet::NeuralNet(int n,int n_layers,int ins,int outs,float _td) {
  int remainder=n % n_layers;
  n+=(n_layers-remainder);
  inner=new Neurode[n];
  input=new float[ins];
  output=new Neurode[outs];
  layers=n_layers;
  num_inner=n;
  num_out=outs;
  num_in=ins;
  num_per_layer=n/n_layers;
  td=_td;
  int i,j;
  for(i=0;i<n;i++) {
    if(i<num_per_layer) inner[i].num_inputs=num_in;
    else inner[i].num_inputs=num_per_layer;
    inner[i].weights=new float[inner[i].num_inputs];
    inner[i].inputs=new int[inner[i].num_inputs];

    for(j=0;j<inner[i].num_inputs;j++) {
      inner[i].weights[j]=(float)rand()*(2.0/RAND_MAX)-1;
      if((float)rand()*(1.0/RAND_MAX)<=td)
	inner[i].inputs[j]=int(float(rand())/RAND_MAX*inner[i].num_inputs);
      else
	inner[i].inputs[j]=j;
    }
  }
  for(i=0;i<num_in;i++) 
    input[i]=0;
  for(i=0;i<num_out;i++) {
    output[i].num_inputs=num_per_layer;
    output[i].weights=new float[output[i].num_inputs];
    output[i].inputs=new int[output[i].num_inputs];

    for(j=0;j<output[i].num_inputs;j++) {
      output[i].weights[j]=(float)rand()*(2.0/RAND_MAX)-1;
      if((float)rand()*(1.0/RAND_MAX)<=td)
	output[i].inputs[j]=int(float(rand())/RAND_MAX*output[i].num_inputs);
      else
	output[i].inputs[j]=j;
    }
  }
}

NeuralNet::~NeuralNet() {
  delete [] inner;
  delete [] output;
  delete [] input;
}

int NeuralNet::RunNet() {
  int i,j;
  float sum;
  for(i=0;i<num_inner;i++) {
    inner[i].output=RunNeurode(i);
  }
  for(i=0;i<num_out;i++) {
    sum=0;
    for(j=0;j<num_per_layer;j++) 
      sum+=output[i].weights[j]*inner[output[i].inputs[j]].output;
    output[i].output=sum;
  }
  return 1;
}

float NeuralNet::RunNeurode(int n) {
  float sum=0;
  int i;

  if(n<num_per_layer) {
    for(i=0;i<inner[n].num_inputs;i++) 
      sum+=input[inner[n].inputs[i]]*inner[n].weights[i];
  } else {
    for(i=0;i<inner[n].num_inputs;i++)
      sum+=inner[n-num_per_layer+inner[n].inputs[i]].output*inner[n].weights[i];
  }
  return sum;
}

// lc is the Hebbian learning constant
// alpha is a logistic coefficient.  seems to work best when <0

int NeuralNet::Learn(float lc,float alpha) {
  int i,j;
  const double E = 2.7182818285;
  for(i=0;i<num_inner;i++) {
    if(i<num_per_layer) {
      for(j=0;j<inner[i].num_inputs;j++)
	inner[i].weights[j]+=lc*(1/(1+pow(E,double(-alpha*inner[i].output)))-0.5)*(input[inner[i].inputs[j]]-0.5); // Yaeger's model
    } else {
      for(j=0;j<inner[i].num_inputs;j++)
	inner[i].weights[j]+=lc*(1/(1+pow(E,double(-alpha*inner[i].output)))-0.5)*(inner[i-num_per_layer+inner[i].inputs[j]].output-0.5); // Yaeger's model
      
    }
  }
  return 1;
}

int NeuralNet::NumInputs() {
  return num_in;
}

int NeuralNet::SetInputs(vector<float> &list) {
  if((signed int)list.size()!=num_in) return 0;
  for(int i=0;i<num_in;i++) 
    input[i]=list[i];
  return 1;
}

int NeuralNet::NumOutputs() {
  return num_out;
}

int NeuralNet::GetOutputs(vector<float> &list) {
  for(int i=0;i<num_out;i++)
    list.push_back(output[i].output);
  return 1;
}
/*
NeuralNetStruct *NeuralNet::NewNeuralNetStruct() {
  NeuralNetStruct *nn=new NeuralNetStruct;
  if(!nn) return NULL;

  nn->num_inner=num_inner;
  nn->num_layers=layers;
  nn->num_input=num_in;
  nn->td=td;
  return nn;
}
*/
/* TEST */
/*

int main(int argc, char *argv[]) {
  NeuralNet nn(10,3,3,3,1.0);
  float *tmp;
  int i,active=1;
  short random_inputs=0;

  while(active) {
    tmp=new float[nn.NumInputs()];
    for(i=0;i<nn.NumInputs();i++) {
      if(random_inputs) {
	tmp[i]=(float)rand()*(2.0/RAND_MAX)-1;
	cout << "Input #" << i << ": " << tmp[i] << endl;
      } else {
	cout << "Enter a number: ";
	cin >> tmp[i];
      }
      getchar();
    }
    if(!nn.SetInputs(tmp,nn.NumInputs())) {
      cout << "Error with SetInput()" << endl;
      return 1;
    }
    delete tmp;
    if(!nn.RunNet()) {
      cout << "Error with RunNet()" << endl;
      return 1;
    }
    tmp=new float[nn.NumOutputs()];
    if(!nn.GetOutputs(tmp,nn.NumOutputs())) {
      cout << "Error with GetOutputs()" << endl;
      return 1;
    }
    for(i=0;i<nn.NumOutputs();i++)
      cout << "Output #" << i << ": " << tmp[i] << endl;
    delete tmp;
    
    cout << "q to quit, enter to continue" << endl;
    if(getchar()=='q') active=0;
    
    nn.Learn(0.05,-1);
  }
  return 0;
}
*/