[go: up one dir, main page]

File: ace.f

package info (click to toggle)
acepack 1.3.3.3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 240 kB
  • ctags: 349
  • sloc: fortran: 1,349; makefile: 1
file content (609 lines) | stat: -rw-r--r-- 16,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
C     real -> double precision conversion for R use
C     <TSL>
c     mortran 2.0     (version of 6/24/75)
      subroutine mace (p,n,x,y,w,l,delrsq,ns,tx,ty,rsq,ierr,m,z)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c
c   subroutine mace(p,n,x,y,w,l,delrsq,ns,tx,ty,rsq,ierr,m,z)
c------------------------------------------------------------------
c
c estimate multiple optimal transformations for regression and
c correlation by alternating conditional expectation estimates.
c
c version 3/28/85.
c
c breiman and friedman, journal of the american statistical
c association (september, 1985)
c
c coded  and copywrite (c) 1985 by:
c
c                        jerome h. friedman
c                     department of statistics
c                               and
c                stanford linear accelerator center
c                        stanford university
c
c all rights reserved.
c
c
c input:
c
c    n : number of observations.
c    p : number of predictor variables for each observation.
c    x(p,n) : predictor data matrix.
c    y(n) : response values for the observations.
c       missing values are signified by a value (response or
c       predictor) greater than or equal to big.
c       (see below - default, big = 1.0e20)
c    w(n) : weights for the observations.
c    l(p+1) : flag for each variable.
c       l(1) through l(p) : predictor variables.
c       l(p+1) : response variable.
c       l(i)=0 => ith variable not to be used.
c       l(i)=1 => ith variable assumes orderable values.
c       l(i)=2 => ith variable assumes circular (periodic) values
c                 in the range (0.0,1.0) with period 1.0.
c       l(i)=3 => ith variable transformation is to be monotone.
c       l(i)=4 => ith variable transformation is to be linear.
c       l(i)=5 => ith variable assumes categorical (unorderable) values.
c   delrsq : termination threshold. iteration stops when
c       rsq changes less than delrsq in nterm
c       consecutive iterations (see below - default, nterm=3).
c   ns : number of eigensolutions (sets of transformations).
c
c output:
c
c   tx(n,p,ns) : predictor transformations.
c      tx(j,i,k) = transformed value of ith predictor for jth obs
c                  for kth eigensolution.
c   ty(n,ns) = response transformations.
c      ty(j,k) = transformed response value for jth observation
c                for kth eigensolution.
c   rsq(ns) = fraction of variance(ty<y>)
c                       p
c         explained by sum tx(i)<x(i)>  for each eigensolution.
c                      i=1
c   ierr : error flag.
c      ierr = 0 : no errors detected.
c      ierr > 0 : error detected - see format statements below.
c
c scratch:
c
c    m(n,p+1), z(n,12) : internal working storage.
c
c note: mace uses an iterative procedure for solving the optimization
c    problem. default starting transformations are ty(j,k)=y(j),
c    tx(j,i,k)=x(i,j) : j=1,n, i=1,p, k=1,ns. other starting transformat
c    can be specified (if desired) for either the response and/or any of
c    the predictor variables. this is signaled by negating the
c    corresponding l(i) value and storing the starting transformed
c    values in the corresponding array (ty(j,k), tx(j,i,k)) before
c    calling mace.
c
c------------------------------------------------------------------
c
      integer p,pp1,m(n,p+1),l(p+1)
      double precision y(n),x(p,n),w(n),ty(n,ns),tx(n,p,ns)
      double precision z(n,12),ct(10),rsq(ns)
      double precision delrsq
      common /prams/ alpha,big,span,itape,maxit,nterm
      double precision sm,sv,sw,sw1
      ierr=0
      pp1=p+1
      sm=0.0
      sv=sm
      sw=sv
      sw1=sw
      do 10 i=1,pp1
      if (l(i).ge.-5.and.l(i).le.5) go to 10
      ierr=6
c     if (itape.gt.0) write (itape,670) i,l(i)
 10   continue
      if (ierr.ne.0) return
      if (l(pp1).ne.0) go to 20
      ierr=4
c      if (itape.gt.0) write (itape,650) pp1
      return
 20   np=0
      do 30 i=1,p
      if (l(i).ne.0) np=np+1
 30   continue
      if (np.gt.0) go to 40
      ierr=5
c      if (itape.gt.0) write (itape,660) p
      return
 40   do 50 j=1,n
      sw=sw+w(j)
 50   continue
      if (sw.gt.0.0) go to 60
      ierr=1
c      if (itape.gt.0) write (itape,620)
      return
 60   do 580 is=1,ns
c      if (itape.gt.0) write (itape,590) is
      do 70 j=1,n
      if (l(pp1).gt.0) ty(j,is)=y(j)
 70   continue
      do 170 i=1,p
      if (l(i).ne.0) go to 90
      do 80 j=1,n
      tx(j,i,is)=0.0
 80   continue
      go to 170
 90   if (l(i).le.0) go to 110
      do 100 j=1,n
      tx(j,i,is)=x(i,j)
 100  continue
 110  do 120 j=1,n
      if (tx(j,i,is).ge.big) go to 120
      sm=sm+w(j)*tx(j,i,is)
      sw1=sw1+w(j)
 120  continue
      if (sw1.gt.0.0) go to 140
      do 130 j=1,n
      tx(j,i,is)=0.0
 130  continue
      sm=0.0
      sw1=sm
      go to 170
 140  sm=sm/sw1
      do 160 j=1,n
      if (tx(j,i,is).ge.big) go to 150
      tx(j,i,is)=tx(j,i,is)-sm
      go to 160
 150  tx(j,i,is)=0.0
 160  continue
      sm=0.0
      sw1=sm
 170  continue
      do 180 j=1,n
      if (ty(j,is).ge.big) go to 180
      sm=sm+w(j)*ty(j,is)
      sw1=sw1+w(j)
 180  continue
      if (sw1.gt.0.0) go to 190
      ierr=1
c      if (itape.gt.0) write (itape,620)
      return
 190  sm=sm/sw1
      do 210 j=1,n
      if (ty(j,is).ge.big) go to 200
      ty(j,is)=ty(j,is)-sm
      go to 210
 200  ty(j,is)=0.0
 210  continue
      do 220 j=1,n
      sv=sv+w(j)*ty(j,is)**2
 220  continue
      sv=sv/sw
      if (sv.le.0.0) go to 230
      sv=1.0/dsqrt(sv)
      go to 260
 230  if (l(pp1).le.0) go to 240
      ierr=2
c      if (itape.gt.0) write (itape,630)
      go to 250
 240  ierr=3
c      if (itape.gt.0) write (itape,640) is
 250  return
 260  do 270 j=1,n
      ty(j,is)=ty(j,is)*sv
 270  continue
      if (is.ne.1) go to 310
      do 280 j=1,n
      m(j,pp1)=j
      z(j,2)=y(j)
 280  continue
      call sort (z(1,2),m(1,pp1),1,n)
      do 300 i=1,p
      if (l(i).eq.0) go to 300
      do 290 j=1,n
      m(j,i)=j
      z(j,2)=x(i,j)
 290  continue
      call sort (z(1,2),m(1,i),1,n)
 300  continue
 310  call scail (p,n,w,sw,ty(1,is),tx(1,1,is),delrsq,p,z(1,5),z(1,6))
      rsq(is)=0.0
      iter=0
      nterm=min0(nterm,10)
      nt=0
      do 320 i=1,nterm
      ct(i)=100.0
 320  continue
 330  iter=iter+1
      nit=0
 340  rsqi=rsq(is)
      nit=nit+1
      do 360 j=1,n
      z(j,5)=ty(j,is)
      do 350 i=1,p
      if (l(i).ne.0) z(j,5)=z(j,5)-tx(j,i,is)
 350  continue
 360  continue
      do 420 i=1,p
      if (l(i).eq.0) go to 420
      do 370 j=1,n
      k=m(j,i)
      z(j,1)=z(k,5)+tx(k,i,is)
      z(j,2)=x(i,k)
      z(j,4)=w(k)
 370  continue
      call smothr (iabs(l(i)),n,z(1,2),z,z(1,4),z(1,3),z(1,6))
      sm=0.0
      do 380 j=1,n
      sm=sm+z(j,4)*z(j,3)
 380  continue
      sm=sm/sw
      do 390 j=1,n
      z(j,3)=z(j,3)-sm
 390  continue
      sv=0.0
      do 400 j=1,n
      sv=sv+z(j,4)*(z(j,1)-z(j,3))**2
 400  continue
      sv=1.0-sv/sw
      if (sv.le.rsq(is)) go to 420
      rsq(is)=sv
      do 410 j=1,n
      k=m(j,i)
      tx(k,i,is)=z(j,3)
      z(k,5)=z(j,1)-z(j,3)
 410  continue
 420  continue
      if (np.eq.1.or.rsq(is)-rsqi.le.delrsq.or.nit.ge.maxit) go to 430
      go to 340
 430  do 450 j=1,n
      k=m(j,pp1)
      z(j,2)=y(k)
      z(j,4)=w(k)
      z(j,1)=0.0
      do 440 i=1,p
      if (l(i).ne.0) z(j,1)=z(j,1)+tx(k,i,is)
 440  continue
 450  continue
      call smothr (iabs(l(pp1)),n,z(1,2),z,z(1,4),z(1,3),z(1,6))
      if (is.le.1) go to 490
      ism1=is-1
      do 480 js=1,ism1
      sm=0.0
      do 460 j=1,n
      k=m(j,pp1)
      sm=sm+w(k)*z(j,3)*ty(k,js)
 460  continue
      sm=sm/sw
      do 470 j=1,n
      k=m(j,pp1)
      z(j,3)=z(j,3)-sm*ty(k,js)
 470  continue
 480  continue
 490  sm=0.0
      sv=sm
      do 500 j=1,n
      k=m(j,pp1)
      sm=sm+w(k)*z(j,3)
      z(k,2)=z(j,1)
 500  continue
      sm=sm/sw
      do 510 j=1,n
      z(j,3)=z(j,3)-sm
      sv=sv+z(j,4)*z(j,3)**2
 510  continue
      sv=sv/sw
      if (sv.le.0.0) go to 520
      sv=1.0/dsqrt(sv)
      go to 530
 520  ierr=3
c      if (itape.gt.0) write (itape,640) is
      return
 530  do 540 j=1,n
      k=m(j,pp1)
      ty(k,is)=z(j,3)*sv
 540  continue
      sv=0.0
      do 550 j=1,n
      sv=sv+w(j)*(ty(j,is)-z(j,2))**2
 550  continue
      rsq(is)=1.0-sv/sw
c      if (itape.gt.0) write (itape,610) iter,rsq(is)
      nt=mod(nt,nterm)+1
      ct(nt)=rsq(is)
      cmn=100.0
      cmx=-100.0
      do 560 i=1,nterm
      cmn=min(cmn,ct(i))
      cmx=max(cmx,ct(i))
 560  continue
      if (cmx-cmn.le.delrsq.or.iter.ge.maxit) go to 570
      go to 330
c 570  if (itape.gt.0) write (itape,600) is,rsq(is)
 570  continue
 580  continue
      return
 590  format('0eigensolution ',i2, ':')
 600  format(' eigensolution ',i2, 'h   r**2  =  1 - e**2  =',g12.4)
 610  format('     iteration ',i2, 'h   r**2  =  1 - e**2  =',g12.4)
 620  format(' ierr=1: sum of weights (w) not positive.')
 630  format(' ierr=2: y has zero variance.')
 640  format(' ierr=3: ty(.',i2,') has zero variance.')
 650  format(' ierr=4: l(',i2,   ') must be nonzero.')
 660  format(' ierr=5: at least one l(1)-l(',i2,') must be nonzero.')
 670  format(' ierr=6: l(',i2,    ') =',g12.4,
     1 ' must be in the range (-5, 5).')
      end
      subroutine model (p,n,y,w,l,tx,ty,f,t,m,z)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c
c          subroutine model(p,n,y,w,l,tx,ty,f,t,m,z)
c--------------------------------------------------------------------
c
c computes response predictive  function f for the model yhat = f(t),
c where
c                                        p
c            f(t) = e(y : t),     t =   sum  tx<i> ( x<i> )
c                                       i=1
c using the x transformations tx constructed by subroutine ace.
c if y is a categorical variable (classification) then
c                                -1
c                       f(t) = ty  (t).
c input:
c
c    p,n,y,w,l : same input as for subroutine ace.
c    tx,ty,m,z : output from subroutine ace.
c
c output:
c
c    f(n),t(n) : input for subroutine acemod.
c
c note: this subroutine must be called before subroutine acemod.
c
c-------------------------------------------------------------------
c
      integer p,pp1,m(n,1),l(1)
      double precision y(n),w(n),tx(n,p),ty(n),f(n),t(n),z(n,12)
      common /prams/ alpha,big,span,itape,maxit,nterm
      pp1=p+1
      if (iabs(l(pp1)).ne.5) go to 20
      do 10 j=1,n
      t(j)=ty(j)
      m(j,pp1)=j
 10   continue
      go to 50
 20   do 40 j=1,n
      s=0.0
      do 30 i=1,p
      s=s+tx(j,i)
 30   continue
      t(j)=s
      m(j,pp1)=j
 40   continue
 50   call sort (t,m(1,pp1),1,n)
      do 140 j=1,n
      k=m(j,pp1)
      z(j,2)=w(k)
      if (y(k).ge.big) go to 60
      z(j,1)=y(k)
      go to 140
 60   j1=j
      j2=j1
 70   if (y(m(j1,pp1)).lt.big) go to 80
      j1=j1-1
      if (j1.lt.1) go to 80
      go to 70
 80   if (y(m(j2,pp1)).lt.big) go to 90
      j2=j2+1
      if (j2.gt.n) go to 90
      go to 80
 90   if (j1.ge.1) go to 100
      k=j2
      go to 130
 100  if (j2.le.n) go to 110
      k=j1
      go to 130
 110  if (t(j)-t(j1).ge.t(j2)-t(j)) go to 120
      k=j1
      go to 130
 120  k=j2
 130  z(j,1)=y(m(k,pp1))
      t(j)=t(k)
 140  continue
      if (iabs(l(pp1)).ne.5) go to 160
      do 150 j=1,n
      f(j)=z(j,1)
 150  continue
      go to 170
 160  call smothr (1,n,t,z,z(1,2),f,z(1,6))
 170  return
      end
      subroutine acemod (v,p,n,x,l,tx,f,t,m,yhat)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c          subroutine acemod(v,p,n,x,l,tx,f,t,m,yhat)
c--------------------------------------------------------------------
c
c computes response y estimates from the model
c
c                yhat =  f ( t( v ) )
c
c using the x transformations tx constructed by subroutine ace and
c the predictor function (f,t) constructed by subroutine model.
c
c input:
c
c       v(p) : vector of predictor values.
c    p,n,x,l : same input as for subroutine ace.
c       tx,m : output from subroutine ace.
c        f,t : output from subroutine model.
c
c output:
c
c    yhat : estimated response value for v.
c
c note: this subroutine must not be called before subroutine model.
c
c-------------------------------------------------------------------
c
      integer p,m(n,1),l(1),low,high,place
      double precision  v(p),x(p,n),f(n),t(n),tx(n,p), yhat
      common /prams/ alpha,big,span,itape,maxit,nterm
      th=0.0
      do 90 i=1,p
      if (l(i).eq.0) go to 90
      vi=v(i)
      if (vi.lt.big) go to 10
      if (x(i,m(n,i)).ge.big) th=th+tx(m(n,i),i)
      go to 90
 10   if (vi.gt.x(i,m(1,i))) go to 20
      place=1
      go to 80
 20   if (vi.lt.x(i,m(n,i))) go to 30
      place=n
      go to 80
 30   low=0
      high=n+1
 40   if (low+1.ge.high) go to 60
      place=(low+high)/2
      xt=x(i,m(place,i))
      if (vi.eq.xt) go to 80
      if (vi.ge.xt) go to 50
      high=place
      go to 40
 50   low=place
      go to 40
 60   if (iabs(l(i)).eq.5) go to 90
      jl=m(low,i)
      jh=m(high,i)
      if (x(i,jh).lt.big) go to 70
      th=th+tx(jl,i)
      go to 90
 70   th=th+tx(jl,i)+(tx(jh,i)-tx(jl,i))*(vi-x(i,jl))/(x(i,jh)-x(i,jl))
      go to 90
 80   th=th+tx(m(place,i),i)
 90   continue
      if (th.gt.t(1)) go to 100
      yhat=f(1)
      return
 100  if (th.lt.t(n)) go to 110
      yhat=f(n)
      return
 110  low=0
      high=n+1
 120  if (low+1.ge.high) go to 150
      place=(low+high)/2
      xt=t(place)
      if (th.ne.xt) go to 130
      yhat=f(place)
      return
 130  if (th.ge.xt) go to 140
      high=place
      go to 120
 140  low=place
      go to 120
 150  if (iabs(l(p+1)).ne.5) go to 170
      if (th-t(low).gt.t(high)-th) go to 160
      yhat=f(low)
      go to 180
 160  yhat=f(high)
      go to 180
 170  yhat=f(low)+(f(high)-f(low))*(th-t(low))/(t(high)-t(low))
 180  return
      end
      block data acedata
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      common /prams/ alpha,big,span,itape,maxit,nterm
c
c     block data
c     common /prams/ itape,maxit,nterm,span,alpha,big
c
c------------------------------------------------------------------
c
c these procedure parameters can be changed in the calling routine
c by defining the above labeled common and resetting the values with
c executable statements.
c
c itape : fortran file number for printer output.
c         (itape.le.0 => no printer output.)
c maxit : maximum number of iterations.
c nterm : number of consecutive iterations for which
c         rsq must change less than delcor for convergence.
c span, alpha : super smoother parameters (see below).
c big : a large representable floating point number.
c
c------------------------------------------------------------------
c
      data itape,maxit,nterm,span,alpha,big /-6,20,3,0.0,0.0,1.0e20/
      end


      subroutine scail (p,n,w,sw,ty,tx,eps,maxit,r,sc)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      integer p
      double precision w(n),ty(n),tx(n,p),r(n),sc(p,5)
      double precision s,h,t,u,gama,delta,sw, eps
      do 10 i=1,p
      sc(i,1)=0.0
 10   continue
      nit=0
 20   nit=nit+1
      do 30 i=1,p
      sc(i,5)=sc(i,1)
 30   continue
      do 160 iter=1,p
      do 50 j=1,n
      s=0.0
      do 40 i=1,p
      s=s+sc(i,1)*tx(j,i)
 40   continue
      r(j)=(ty(j)-s)*w(j)
 50   continue
      do 70 i=1,p
      s=0.0
      do 60 j=1,n
      s=s+r(j)*tx(j,i)
 60   continue
      sc(i,2)=-2.0*s/sw
 70   continue
      s=0.0
      do 80 i=1,p
      s=s+sc(i,2)**2
 80   continue
      if (s.le.0.0) go to 170
      if (iter.ne.1) go to 100
      do 90 i=1,p
      sc(i,3)=-sc(i,2)
 90   continue
      h=s
      go to 120
 100  gama=s/h
      h=s
      do 110 i=1,p
      sc(i,3)=-sc(i,2)+gama*sc(i,4)
 110  continue
 120  s=0.0
      t=s
      do 140 j=1,n
      u=0.0
      do 130 i=1,p
      u=u+sc(i,3)*tx(j,i)
 130  continue
      s=s+u*r(j)
      t=t+w(j)*u**2
 140  continue
      delta=s/t
      do 150 i=1,p
      sc(i,1)=sc(i,1)+delta*sc(i,3)
      sc(i,4)=sc(i,3)
 150  continue
 160  continue
 170  v=0.0
      do 180 i=1,p
      v=max(v,abs(sc(i,1)-sc(i,5)))
 180  continue
      if (v.lt.eps.or.nit.ge.maxit) go to 190
      go to 20
 190  do 210 i=1,p
      do 200 j=1,n
      tx(j,i)=sc(i,1)*tx(j,i)
 200  continue
 210  continue
      return
      end