[go: up one dir, main page]

File: avas.Rd

package info (click to toggle)
acepack 1.3.3.3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 240 kB
  • ctags: 349
  • sloc: fortran: 1,349; makefile: 1
file content (107 lines) | stat: -rw-r--r-- 3,859 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
\name{avas}
\alias{avas}
\alias{avas.formula}
\title{Additivity and variance stabilization for regression}
\usage{
avas(x, y, wt = rep(1, nrow(x)), cat = NULL, mon = NULL, 
    lin = NULL, circ = NULL, delrsq = 0.01, yspan = 0) 
}
\description{Estimate transformations of \code{x} and \code{y} such that
  the regression of \code{y} on \code{x} is approximately linear with
  constant variance}
\arguments{
    \item{x}{a matrix containing the independent variables.}
    \item{y}{a vector containing the response variable.}
    \item{wt}{an optional vector of weights.}
    \item{cat}{an optional integer vector specifying which variables
	assume categorical values.  Positive values in \code{cat} refer
	to columns of the \code{x} matrix and zero to the response
	variable.  Variables must be numeric, so a character variable
	should first be transformed with as.numeric() and then specified
	as categorical.}
    \item{mon}{an optional integer vector specifying which variables are
	to be transformed by monotone transformations.  Positive values
	in \code{mon} refer to columns of the \code{x} matrix and zero
	to the response variable.}
    \item{lin}{an optional integer vector specifying which variables are
	to be transformed by linear transformations.  Positive values in
	\code{lin} refer to columns of the \code{x} matrix and zero to
	the response variable.}
    \item{circ}{an integer vector specifying which variables assume
	circular (periodic) values.  Positive values in \code{circ}
	refer to columns of the \code{x} matrix and zero to the response
	variable.}
    \item{delrsq}{termination threshold.  Iteration stops when R-squared
	changes by less than \code{delrsq} in 3 consecutive iterations
	(default 0.01).}
    \item{yspan}{Optional window size parameter for smoothing the
	variance.  Range is \eqn{[0,1]}.  Default is 0 (cross validated
	choice). .5 is a reasonable alternative to try.}
}
\value{
    A structure with the following components:
    \item{x}{the input x matrix.}
    \item{y}{the input y vector.}
    \item{tx}{the transformed x values.}
    \item{ty}{the transformed y values.}
    \item{rsq}{the multiple R-squared value for the transformed values.}
    \item{l}{the codes for cat, mon, ...}
    \item{m}{not used in this version of avas}
    \item{yspan}{span used for smoothing the variance}
    \item{iters}{iteration number and rsq for that iteration}
    \item{niters}{number of iterations used}
}
\references{
    Rob Tibshirani (1987),
    ``Estimating optimal transformations for regression''. 
    \emph{Journal of the American Statistical Association} \bold{83},
    394ff.
}
\examples{
TWOPI <- 8*atan(1)
x <- runif(200,0,TWOPI)
y <- exp(sin(x)+rnorm(200)/2)
a <- avas(x,y)
par(mfrow=c(3,1))
plot(a$y,a$ty)  # view the response transformation
plot(a$x,a$tx)  # view the carrier transformation
plot(a$tx,a$ty) # examine the linearity of the fitted model

# From D. Wang and M. Murphy (2005), Identifying nonlinear relationships
# regression using the ACE algorithm.  Journal of Applied Statistics,
# 32, 243-258, adapted for avas.
X1 <- runif(100)*2-1
X2 <- runif(100)*2-1
X3 <- runif(100)*2-1
X4 <- runif(100)*2-1

# Original equation of Y:
Y <- log(4 + sin(3*X1) + abs(X2) + X3^2 + X4 + .1*rnorm(100))

# Transformed version so that Y, after transformation, is a
# linear function of transforms of the X variables:
# exp(Y) = 4 + sin(3*X1) + abs(X2) + X3^2 + X4

a1 <- avas(cbind(X1,X2,X3,X4),Y)

par(mfrow=c(2,1))

# For each variable, show its transform as a function of
# the original variable and the of the transform that created it,
# showing that the transform is recovered.
plot(X1,a1$tx[,1])
plot(sin(3*X1),a1$tx[,1])

plot(X2,a1$tx[,2])
plot(abs(X2),a1$tx[,2])

plot(X3,a1$tx[,3])
plot(X3^2,a1$tx[,3])

plot(X4,a1$tx[,4])
plot(X4,a1$tx[,4])

plot(Y,a1$ty)
plot(exp(Y),a1$ty)
}
\keyword{models}