1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
subroutine avas(p,n,x,y,w,l,delrsq,tx,ty,rsq,ierr,m,z,yspan,iter,
1 iters)
integer p,pp1,pp2,m(n,1),l(1)
double precision y(n),x(n,p),w(n),ty(n),tx(n,p),z(n,17),ct(10)
double precision iters(100,2), delrsq, rsq, yspan
common /parms/ itape,maxit,nterm,span,alpha
double precision sm,sv,sw,svx
ierr = 0
pp1 = p+1
pp2 = p + 2
sm = 0.0
sv = sm
sw = sv
np = 0
do 23000 i = 1,p
if(.not.(l(i).gt.0))goto 23002
np = np+1
23002 continue
23000 continue
do 23004 j = 1,n
sm = sm+w(j)*y(j)
sv = sv+w(j)*y(j)**2
sw = sw+w(j)
m(j,pp1) = j
z(j,2) = y(j)
23004 continue
sm = sm/sw
sv = sv/sw-sm**2
sv = 1.0/dsqrt(sv)
do 23006 j = 1,n
z(j,1) = (y(j)-sm)*sv
23006 continue
call sort(z(1,2),m(1,pp1),1,n)
do 23008 i = 1,p
if(.not.(l(i) .gt. 0))goto 23010
sm=0
do 23012 j=1,n
sm=sm+w(j)*x(j,i)
23012 continue
sm=sm/sw
do 23014 j = 1,n
m(j,i) = j
z(j,2) = x(j,i)
23014 continue
call sort(z(1,2),m(1,i),1,n)
23010 continue
23008 continue
rsq = 0.0
iter = 0
nterm = min0(nterm,10)
nt = 0
do 23016 i = 1,nterm
ct(i) = 100.0
23016 continue
do 23018 j=1,n
ty(j)=z(j,1)
23018 continue
do 23020 j = 1,n
z(j,9)=ty(j)
23020 continue
call bakfit(iter,delrsq,rsq,sw,l,z,m,x,z(1,9),tx,w,n,p,np)
sumlog=0
23022 continue
iter=iter +1
if(.not.(l(pp1).eq.4))goto 23025
go to 992
23025 continue
call calcmu(n,p,l,z,tx)
do 23027 j=1,n
tres=(ty(j)-z(j,10))
if(.not.(abs(tres).lt.1e-10))goto 23029
tres=1e-10
23029 continue
z(j,2)=log(sqrt(tres**2))
m(j,pp2)=j
23027 continue
call sort(z(1,10),m(1,pp2),1,n)
do 23031 j=1,n
k=m(j,pp2)
z(j,4)=z(k,2)
z(j,5)=w(k)
23031 continue
call rlsmo(z(1,10),z(1,4),z(1,5),yspan,dof,n,z(1,6),rss,z(1,7))
do 23033 j=1,n
k=m(j,pp2)
z(j,7)=exp(-z(j,6))
sumlog=sumlog+n*(w(j)/sw)*2*z(j,6)
z(j,8)=ty(k)
23033 continue
call ctsub(n,z(1,10),z(1,7),z(1,8),z(1,9))
sm=0
do 23035 j=1,n
sm=sm+w(j)*z(j,9)
23035 continue
do 23037 j=1,n
k=m(j,pp2)
ty(k)=z(j,9)-sm/sw
23037 continue
sv=0
svx=0
do 23039 j=1,n
sv=sv+(w(j)/sw)*ty(j)*ty(j)
svx=svx+(w(j)/sw)*z(j,10)*z(j,10)
23039 continue
do 23041 j=1,n
ty(j)=ty(j)/dsqrt(sv)
do 23043 i=1,p
if(.not.( l(i) .gt. 0))goto 23045
tx(j,i)=tx(j,i)/dsqrt(svx)
23045 continue
23043 continue
23041 continue
992 continue
do 23047 j = 1,n
z(j,9)=ty(j)
23047 continue
call bakfit(iter,delrsq,rsq,sw,l,z,m,x,z(1,9),tx,w,n,p,np)
sumlog=sumlog+n*dlog(sv)
rr=0
call calcmu(n,p,l,z,tx)
do 23049 j=1,n
rr=rr+(w(j)/sw)*(ty(j)-z(j,10))**2
23049 continue
rsq=1-rr
rnew=sumlog+rr
iters(iter,1)=iter
iters(iter,2)=rsq
nt = mod(nt,nterm)+1
ct(nt) = rsq
cmn = 100.0
cmx = -100.0
do 23051 i = 1,nterm
cmn = min(cmn,ct(i))
cmx = max(cmx,ct(i))
23051 continue
if(.not.(cmx-cmn.le.delrsq.or.iter.ge.maxit.or.l(pp1).eq.4))
1 goto 23053
return
23053 continue
23023 goto 23022
return
end
subroutine calcmu(n,p,l,z,tx)
integer p, l(1)
double precision z(n,17),tx(n,p)
do 23055 j=1,n
z(j,10)=0
do 23057 i=1,p
if(.not.(l(i) .gt. 0))goto 23059
z(j,10)=z(j,10)+tx(j,i)
23059 continue
23057 continue
23055 continue
return
end
subroutine bakfit(iter,delrsq,rsq,sw,l,z,m,x,ty,tx,w,n,p,np)
integer l(1),m(n,1),p
double precision z(n,17),ty(n),tx(n,p),x(n,p),w(n)
double precision sm,sv,sw, delrsq, rsq
common /parms/ itape,maxit,nterm,span,alpha
call calcmu(n,p,l,z,tx)
do 23061 j=1,n
ty(j)=ty(j)-z(j,10)
23061 continue
nit=0
23063 continue
rsqi = rsq
nit = nit+1
do 23066 i = 1,p
if(.not.(l(i).gt.0))goto 23068
do 23070 j = 1,n
k = m(j,i)
z(j,1) = ty(k)+tx(k,i)
z(j,2) = x(k,i)
z(j,7) = w(k)
23070 continue
call smothr(l(i),n,z(1,2),z,z(1,7),z(1,6),z(1,11))
sm = 0.0
do 23072 j = 1,n
sm = sm+z(j,7)*z(j,6)
23072 continue
sm = sm/sw
do 23074 j = 1,n
z(j,6) = z(j,6)-sm
23074 continue
sv = 0.0
do 23076 j = 1,n
sv = sv+z(j,7)*(z(j,1)-z(j,6))**2
23076 continue
sv = 1.0-sv/sw
rsq = sv
do 23078 j = 1,n
k = m(j,i)
tx(k,i) = z(j,6)
ty(k) = z(j,1)-z(j,6)
23078 continue
23068 continue
23066 continue
23064 if(.not.(np.eq.1.or.abs(rsq-rsqi).le.delrsq.or.nit.ge.maxit))
1 goto 23063
if(.not.(rsq.eq.0.0.and.iter.eq.0))goto 23080
do 23082 i = 1,p
if(.not.(l(i).gt.0))goto 23084
do 23086 j = 1,n
tx(j,i) = x(j,i)
23086 continue
23084 continue
23082 continue
23080 continue
return
end
subroutine ctsub(n,u,v,y,ty)
double precision u(1),v(1),y(1),ty(1)
i=1
23088 if(.not.(i.le.n))goto 23090
if(.not.(y(i).le.u(1)))goto 23091
ty(i)=(y(i)-u(1))*v(1)
goto 23092
23091 continue
j=1
ty(i)=0
23093 if(.not.((j.le.n) .and. (y(i).gt.u(j)) ))goto 23094
if(.not.(j .gt. 1))goto 23095
ty(i)=ty(i)+(u(j)-u(j-1))*(v(j)+v(j-1))/2
23095 continue
j=j+1
goto 23093
23094 continue
if(.not.(y(i).le.u(n)))goto 23097
ty(i)=ty(i)+.5*(y(i)-u(j-1))*(2*v(j-1)+(y(i)-u(j-1))*(v(j)-v(j-1))
1 /(u(j)-u(j-1)))
goto 23098
23097 continue
ty(i)=ty(i)+(y(i)-u(n))*v(n)
23098 continue
23092 continue
i=i+1
goto 23088
23090 continue
return
end
block data avasdata
common /parms/ itape,maxit,nterm,span,alpha
common /spans/ spans(3) /consts/ big,sml,eps
c------------------------------------------------------------------
c
c these procedure parameters can be changed in the calling routine
c by defining the above labeled common and resetting the values with
c executable statements.
c
c itape : fortran file number for printer output.
c (itape.le.0 => no printer output.)
c maxit : maximum number of iterations.
c nterm : number of consecutive iterations for which
c rsq must change less than delcor for convergence.
c span, alpha : super smoother parameters.
c (see - friedman and stuetzle, reference above.)
c
c------------------------------------------------------------------
data itape,maxit,nterm,span,alpha /-6,20,3,0.0,5.0/
c---------------------------------------------------------------
c
c this sets the compile time (default) values for various
c internal parameters :
c
c spans : span values for the three running linear smoothers.
c spans(1) : tweeter span.
c spans(2) : midrange span.
c spans(3) : woofer span.
c (these span values should be changed only with care.)
c big : a large representable floating point number.
c sml : a small number. should be set so that (sml)**(10.0) does
c not cause floating point underflow.
c eps : used to numerically stabilize slope calculations for
c running linear fits.
c
c these parameter values can be changed by declaring the
c relevant labeled common in the main program and resetting
c them with executable statements.
c
c-----------------------------------------------------------------
data spans,big,sml,eps /0.05,0.2,0.5,1.0e20,1.0e-4,1.0e-3/
end
subroutine smothr (l,n,x,y,w,smo,scr)
double precision x(n),y(n),w(n),smo(n),scr(n,7)
common /parms/ itape,maxit,nterm,span,alpha
double precision sm,sw,a,b,d
if (l.lt.5) go to 50
j=1
10 j0=j
sm=w(j)*y(j)
sw=w(j)
if (j.ge.n) go to 30
20 if (x(j+1).gt.x(j)) go to 30
j=j+1
sm=sm+w(j)*y(j)
sw=sw+w(j)
if (j.ge.n) go to 30
go to 20
30 sm=sm/sw
do 40 i=j0,j
smo(i)=sm
40 continue
j=j+1
if (j.gt.n) go to 250
go to 10
50 if (l.ne.4) go to 80
sm=0.0
sw=sm
b=sw
d=b
do 60 j=1,n
sm=sm+w(j)*x(j)*y(j)
sw=sw+w(j)*x(j)**2
b=b+w(j)*x(j)
d=d+w(j)
60 continue
a=sm/(sw-(b**2)/d)
b=b/d
do 70 j=1,n
smo(j)=a*(x(j)-b)
70 continue
go to 250
80 call supsmu (n,x,y,w,l,span,alpha,smo,scr)
if (l.ne.3) go to 250
do 90 j=1,n
scr(j,1)=smo(j)
scr(n-j+1,2)=scr(j,1)
90 continue
call montne (scr,n)
call montne (scr(1,2),n)
sm=0.0
sw=sm
do 100 j=1,n
sm=sm+(smo(j)-scr(j,1))**2
sw=sw+(smo(j)-scr(n-j+1,2))**2
100 continue
if (sm.ge.sw) go to 120
do 110 j=1,n
smo(j)=scr(j,1)
110 continue
go to 140
120 do 130 j=1,n
smo(j)=scr(n-j+1,2)
130 continue
140 j=1
150 j0=j
if (j.ge.n) go to 170
160 if (smo(j+1).ne.smo(j)) go to 170
j=j+1
if (j.ge.n) go to 170
go to 160
170 if (j.le.j0) go to 190
a=0.0
if (j0.gt.1) a=0.5*(smo(j0)-smo(j0-1))
b=0.0
if (j.lt.n) b=0.5*(smo(j+1)-smo(j))
d=(a+b)/(j-j0)
if (a.eq.0.0.or.b.eq.0.0) d=2.0*d
if (a.eq.0.0) a=b
do 180 i=j0,j
smo(i)=smo(i)-a+d*(i-j0)
180 continue
190 j=j+1
if (j.gt.n) go to 200
go to 150
200 j=1
210 j0=j
sm=smo(j)
if (j.ge.n) go to 230
220 if (x(j+1).gt.x(j)) go to 230
j=j+1
sm=sm+smo(j)
if (j.ge.n) go to 230
go to 220
230 sm=sm/(j-j0+1)
do 240 i=j0,j
smo(i)=sm
240 continue
j=j+1
if (j.gt.n) go to 250
go to 210
250 return
end
subroutine montne (x,n)
double precision x(n)
integer bb,eb,br,er,bl,el
bb=0
eb=bb
10 if (eb.ge.n) go to 110
bb=eb+1
eb=bb
20 if (eb.ge.n) go to 30
if (x(bb).ne.x(eb+1)) go to 30
eb=eb+1
go to 20
30 if (eb.ge.n) go to 70
if (x(eb).le.x(eb+1)) go to 70
br=eb+1
er=br
40 if (er.ge.n) go to 50
if (x(er+1).ne.x(br)) go to 50
er=er+1
go to 40
50 pmn=(x(bb)*(eb-bb+1)+x(br)*(er-br+1))/(er-bb+1)
eb=er
do 60 i=bb,eb
x(i)=pmn
60 continue
70 if (bb.le.1) go to 10
if (x(bb-1).le.x(bb)) go to 10
bl=bb-1
el=bl
80 if (bl.le.1) go to 90
if (x(bl-1).ne.x(el)) go to 90
bl=bl-1
go to 80
90 pmn=(x(bb)*(eb-bb+1)+x(bl)*(el-bl+1))/(eb-bl+1)
bb=bl
do 100 i=bb,eb
x(i)=pmn
100 continue
go to 30
110 return
end
subroutine sort (v,a,ii,jj)
c
c puts into a the permutation vector which sorts v into
c increasing order. only elements from ii to jj are considered.
c arrays iu(k) and il(k) permit sorting up to 2**(k+1)-1 elements
c
c this is a modification of cacm algorithm #347 by r. c. singleton,
c which is a modified hoare quicksort.
c
dimension a(jj),v(1)
integer iu(20),il(20)
integer t,tt
integer a
double precision v
m=1
i=ii
j=jj
10 if (i.ge.j) go to 80
20 k=i
ij=(j+i)/2
t=a(ij)
vt=v(ij)
if (v(i).le.vt) go to 30
a(ij)=a(i)
a(i)=t
t=a(ij)
v(ij)=v(i)
v(i)=vt
vt=v(ij)
30 l=j
if (v(j).ge.vt) go to 50
a(ij)=a(j)
a(j)=t
t=a(ij)
v(ij)=v(j)
v(j)=vt
vt=v(ij)
if (v(i).le.vt) go to 50
a(ij)=a(i)
a(i)=t
t=a(ij)
v(ij)=v(i)
v(i)=vt
vt=v(ij)
go to 50
40 a(l)=a(k)
a(k)=tt
v(l)=v(k)
v(k)=vtt
50 l=l-1
if (v(l).gt.vt) go to 50
tt=a(l)
vtt=v(l)
60 k=k+1
if (v(k).lt.vt) go to 60
if (k.le.l) go to 40
if (l-i.le.j-k) go to 70
il(m)=i
iu(m)=l
i=k
m=m+1
go to 90
70 il(m)=k
iu(m)=j
j=l
m=m+1
go to 90
80 m=m-1
if (m.eq.0) return
i=il(m)
j=iu(m)
90 if (j-i.gt.10) go to 20
if (i.eq.ii) go to 10
i=i-1
100 i=i+1
if (i.eq.j) go to 80
t=a(i+1)
vt=v(i+1)
if (v(i).le.vt) go to 100
k=i
110 a(k+1)=a(k)
v(k+1)=v(k)
k=k-1
if (vt.lt.v(k)) go to 110
a(k+1)=t
v(k+1)=vt
go to 100
end
subroutine supsmu (n,x,y,w,iper,span,alpha,smo,sc)
c------------------------------------------------------------------
c
c super smoother (friedman and stuetzle, 1984).
c
c version 3/10/84
c
c coded by: j. h. friedman
c department of statistics and
c stanford linear accelerator center
c stanford university
c stanford ca. 94305
c
c input:
c n : number of observations (x,y - pairs).
c x(n) : ordered abscissa values.
c y(n) : corresponding ordinate (response) values.
c w(n) : weight for each (x,y) observation.
c iper : periodic variable flag.
c iper=1 => x is ordered interval variable.
c iper=2 => x is a periodic variable with values
c in the range (0.0,1.0) and peroid 1.0.
c span : smoother span (fraction of observations in window).
c span=0.0 => automatic (variable) span selection.
c alpha : controles high frequency (small span) penality
c used with automatic span selection (base tone control).
c (alpha.le.0.0 or alpha.gt.10.0 => no effect.)
c output:
c smo(n) : smoothed ordinate (response) values.
c scratch:
c sc(n,7) : internal working storage.
c
c note:
c for small samples (n < 40) or if there are substantial serial
c correlations between obserations close in x - value, then
c a prespecified fixed span smoother (span > 0) should be
c used. reasonable span values are 0.3 to 0.5.
c
c------------------------------------------------------------------
double precision x(n),y(n),w(n),smo(n),sc(n,7)
common /spans/ spans(3) /consts/ big,sml,eps
double precision h
if (x(n).gt.x(1)) go to 30
sy=0.0
sw=sy
do 10 j=1,n
sy=sy+w(j)*y(j)
sw=sw+w(j)
10 continue
a=sy/sw
do 20 j=1,n
smo(j)=a
20 continue
return
30 i=n/4
j=3*i
scale=x(j)-x(i)
40 if (scale.gt.0.0) go to 50
if (j.lt.n) j=j+1
if (i.gt.1) i=i-1
scale=x(j)-x(i)
go to 40
50 vsmlsq=(eps*scale)**2
jper=iper
if (iper.eq.2.and.(x(1).lt.0.0.or.x(n).gt.1.0)) jper=1
if (jper.lt.1.or.jper.gt.2) jper=1
if (span.le.0.0) go to 60
call smooth (n,x,y,w,span,jper,vsmlsq,smo,sc)
return
60 do 70 i=1,3
call smooth (n,x,y,w,spans(i),jper,vsmlsq,sc(1,2*i-1),sc(1,7))
call smooth (n,x,sc(1,7),w,spans(2),-jper,vsmlsq,sc(1,2*i),h)
70 continue
do 90 j=1,n
resmin=big
do 80 i=1,3
if (sc(j,2*i).ge.resmin) go to 80
resmin=sc(j,2*i)
sc(j,7)=spans(i)
80 continue
if (alpha.gt.0.0.and.alpha.le.10.0.and.resmin.lt.sc(j,6)) sc(j,7)=
1sc(j,7)+(spans(3)-sc(j,7))*max(sml,resmin/sc(j,6))**(10.0-alpha)
90 continue
call smooth (n,x,sc(1,7),w,spans(2),-jper,vsmlsq,sc(1,2),h)
do 110 j=1,n
if (sc(j,2).le.spans(1)) sc(j,2)=spans(1)
if (sc(j,2).ge.spans(3)) sc(j,2)=spans(3)
f=sc(j,2)-spans(2)
if (f.ge.0.0) go to 100
f=-f/(spans(2)-spans(1))
sc(j,4)=(1.0-f)*sc(j,3)+f*sc(j,1)
go to 110
100 f=f/(spans(3)-spans(2))
sc(j,4)=(1.0-f)*sc(j,3)+f*sc(j,5)
110 continue
call smooth (n,x,sc(1,4),w,spans(1),-jper,vsmlsq,smo,h)
return
end
subroutine smooth (n,x,y,w,span,iper,vsmlsq,smo,acvr)
double precision x(n),y(n),w(n),smo(n),acvr(n)
integer in,out
xm=0.0
ym=xm
var=ym
cvar=var
fbw=cvar
jper=iabs(iper)
ibw=0.5*span*n+0.5
if (ibw.lt.2) ibw=2
it=2*ibw+1
do 20 i=1,it
j=i
if (jper.eq.2) j=i-ibw-1
xti=x(j)
if (j.ge.1) go to 10
j=n+j
xti=x(j)-1.0
10 wt=w(j)
fbo=fbw
fbw=fbw+wt
xm=(fbo*xm+wt*xti)/fbw
ym=(fbo*ym+wt*y(j))/fbw
tmp=0.0
if (fbo.gt.0.0) tmp=fbw*wt*(xti-xm)/fbo
var=var+tmp*(xti-xm)
cvar=cvar+tmp*(y(j)-ym)
20 continue
do 70 j=1,n
out=j-ibw-1
in=j+ibw
if ((jper.ne.2).and.(out.lt.1.or.in.gt.n)) go to 60
if (out.ge.1) go to 30
out=n+out
xto=x(out)-1.0
xti=x(in)
go to 50
30 if (in.le.n) go to 40
in=in-n
xti=x(in)+1.0
xto=x(out)
go to 50
40 xto=x(out)
xti=x(in)
50 wt=w(out)
fbo=fbw
fbw=fbw-wt
tmp=0.0
if (fbw.gt.0.0) tmp=fbo*wt*(xto-xm)/fbw
var=var-tmp*(xto-xm)
cvar=cvar-tmp*(y(out)-ym)
xm=(fbo*xm-wt*xto)/fbw
ym=(fbo*ym-wt*y(out))/fbw
wt=w(in)
fbo=fbw
fbw=fbw+wt
xm=(fbo*xm+wt*xti)/fbw
ym=(fbo*ym+wt*y(in))/fbw
tmp=0.0
if (fbo.gt.0.0) tmp=fbw*wt*(xti-xm)/fbo
var=var+tmp*(xti-xm)
cvar=cvar+tmp*(y(in)-ym)
60 a=0.0
if (var.gt.vsmlsq) a=cvar/var
smo(j)=a*(x(j)-xm)+ym
if (iper.le.0) go to 70
h=1.0/fbw
if (var.gt.vsmlsq) h=h+(x(j)-xm)**2/var
acvr(j)=abs(y(j)-smo(j))/(1.0-w(j)*h)
70 continue
j=1
80 j0=j
sy=smo(j)*w(j)
fbw=w(j)
if (j.ge.n) go to 100
90 if (x(j+1).gt.x(j)) go to 100
j=j+1
sy=sy+w(j)*smo(j)
fbw=fbw+w(j)
if (j.ge.n) go to 100
go to 90
100 if (j.le.j0) go to 120
sy=sy/fbw
do 110 i=j0,j
smo(i)=sy
110 continue
120 j=j+1
if (j.gt.n) go to 130
go to 80
130 return
end
|