[go: up one dir, main page]

File: ace.doc

package info (click to toggle)
acepack 1.3.2.1-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 148 kB
  • ctags: 351
  • sloc: fortran: 1,359; sh: 28; makefile: 12
file content (219 lines) | stat: -rw-r--r-- 7,610 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
C
C   SUBROUTINE MACE(P,N,X,Y,W,L,DELRSQ,NS,TX,TY,RSQ,IERR,M,Z)
C------------------------------------------------------------------
C
C ESTIMATE MULTIPLE OPTIMAL TRANSFORMATIONS FOR REGRESSION AND
C CORRELATION BY ALTERNATING CONDITIONAL EXPECTATION ESTIMATES.
C
C VERSION 3/28/85.
C
C BREIMAN AND FRIEDMAN, JOURNAL OF THE AMERICAN STATISTICAL
C ASSOCIATION (SEPTEMBER, 1985)
C
C CODED  AND COPYWRITE (C) 1985 BY:
C
C                        JEROME H. FRIEDMAN
C                     DEPARTMENT OF STATISTICS
C                               AND
C                STANFORD LINEAR ACCELERATOR CENTER
C                        STANFORD UNIVERSITY
C
C ALL RIGHTS RESERVED.
C
C
C INPUT:
C
C    N : NUMBER OF OBSERVATIONS.
C    P : NUMBER OF PREDICTOR VARIABLES FOR EACH OBSERVATION.
C    X(P,N) : PREDICTOR DATA MATRIX.
C    Y(N) : RESPONSE VALUES FOR THE OBSERVATIONS.
C       MISSING VALUES ARE SIGNIFIED BY A VALUE (RESPONSE OR
C       PREDICTOR) GREATER THAN OR EQUAL TO BIG.
C       (SEE BELOW - DEFAULT, BIG = 1.0E20)
C    W(N) : WEIGHTS FOR THE OBSERVATIONS.
C    L(P+1) : FLAG FOR EACH VARIABLE.
C       L(1) THROUGH L(P) : PREDICTOR VARIABLES.
C       L(P+1) : RESPONSE VARIABLE.
C       L(I)=0 => ITH VARIABLE NOT TO BE USED.
C       L(I)=1 => ITH VARIABLE ASSUMES ORDERABLE VALUES.
C       L(I)=2 => ITH VARIABLE ASSUMES CIRCULAR (PERIODIC) VALUES
C                 IN THE RANGE (0.0,1.0) WITH PERIOD 1.0.
C       L(I)=3 => ITH VARIABLE TRANSFORMATION IS TO BE MONOTONE.
C       L(I)=4 => ITH VARIABLE TRANSFORMATION IS TO BE LINEAR.
C       L(I)=5 => ITH VARIABLE ASSUMES CATEGORICAL (UNORDERABLE) VALUES.
C   DELRSQ : TERMINATION THRESHOLD. ITERATION STOPS WHEN
C       RSQ CHANGES LESS THAN DELRSQ IN NTERM
C       CONSECUTIVE ITERATIONS (SEE BELOW - DEFAULT, NTERM=3).
C   NS : NUMBER OF EIGENSOLUTIONS (SETS OF TRANSFORMATIONS).
C
C OUTPUT:
C
C   TX(N,P,NS) : PREDICTOR TRANSFORMATIONS.
C      TX(J,I,K) = TRANSFORMED VALUE OF ITH PREDICTOR FOR JTH OBS
C                  FOR KTH EIGENSOLUTION.
C   TY(N,NS) = RESPONSE TRANSFORMATIONS.
C      TY(J,K) = TRANSFORMED RESPONSE VALUE FOR JTH OBSERVATION
C                FOR KTH EIGENSOLUTION.
C   RSQ(NS) = FRACTION OF VARIANCE(TY<Y>)
C                       P
C         EXPLAINED BY SUM TX(I)<X(I)>  FOR EACH EIGENSOLUTION.
C                      I=1
C   IERR : ERROR FLAG.
C      IERR = 0 : NO ERRORS DETECTED.
C      IERR > 0 : ERROR DETECTED - SEE FORMAT STATEMENTS BELOW.
C
C SCRATCH:
C
C    M(N,P+1), Z(N,12) : INTERNAL WORKING STORAGE.
C
C NOTE: MACE USES AN ITERATIVE PROCEDURE FOR SOLVING THE OPTIMIZATION
C    PROBLEM. DEFAULT STARTING TRANSFORMATIONS ARE TY(J,K)=Y(J),
C    TX(J,I,K)=X(I,J) : J=1,N, I=1,P, K=1,NS. OTHER STARTING TRANSFORMATIONS
C    CAN BE SPECIFIED (IF DESIRED) FOR EITHER THE RESPONSE AND/OR ANY OF
C    THE PREDICTOR VARIABLES. THIS IS SIGNALED BY NEGATING THE
C    CORRESPONDING L(I) VALUE AND STORING THE STARTING TRANSFORMED
C    VALUES IN THE CORRESPONDING ARRAY (TY(J,K), TX(J,I,K)) BEFORE
C    CALLING MACE.
C
C------------------------------------------------------------------
C


C
C          SUBROUTINE MODEL(P,N,Y,W,L,TX,TY,F,T,M,Z)
C--------------------------------------------------------------------
C
C COMPUTES RESPONSE PREDICTIVE  FUNCTION F FOR THE MODEL YHAT = F(T),
C WHERE
C                                        P
C            F(T) = E(Y : T),     T =   SUM  TX<I> ( X<I> )
C                                       I=1
C USING THE X TRANSFORMATIONS TX CONSTRUCTED BY SUBROUTINE ACE.
C IF Y IS A CATEGORICAL VARIABLE (CLASSIFICATION) THEN
C                                -1
C                       F(T) = TY  (T).
C INPUT:
C
C    P,N,Y,W,L : SAME INPUT AS FOR SUBROUTINE ACE.
C    TX,TY,M,Z : OUTPUT FROM SUBROUTINE ACE.
C
C OUTPUT:
C
C    F(N),T(N) : INPUT FOR SUBROUTINE ACEMOD.
C
C NOTE: THIS SUBROUTINE MUST BE CALLED BEFORE SUBROUTINE ACEMOD.
C
C-------------------------------------------------------------------
C


C          SUBROUTINE ACEMOD(V,P,N,X,L,TX,F,T,M,YHAT)
C--------------------------------------------------------------------
C
C COMPUTES RESPONSE Y ESTIMATES FROM THE MODEL
C
C                YHAT =  F ( T( V ) )
C
C USING THE X TRANSFORMATIONS TX CONSTRUCTED BY SUBROUTINE ACE AND
C THE PREDICTOR FUNCTION (F,T) CONSTRUCTED BY SUBROUTINE MODEL.
C
C INPUT:
C
C       V(P) : VECTOR OF PREDICTOR VALUES.
C    P,N,X,L : SAME INPUT AS FOR SUBROUTINE ACE.
C       TX,M : OUTPUT FROM SUBROUTINE ACE.
C        F,T : OUTPUT FROM SUBROUTINE MODEL.
C
C OUTPUT:
C
C    YHAT : ESTIMATED RESPONSE VALUE FOR V.
C
C NOTE: THIS SUBROUTINE MUST NOT BE CALLED BEFORE SUBROUTINE MODEL.
C
C-------------------------------------------------------------------
C


C
C     BLOCK DATA
C     COMMON /PARMS/ ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG
C
C------------------------------------------------------------------
C
C THESE PROCEDURE PARAMETERS CAN BE CHANGED IN THE CALLING ROUTINE
C BY DEFINING THE ABOVE LABELED COMMON AND RESETTING THE VALUES WITH
C EXECUTABLE STATEMENTS.
C
C ITAPE : FORTRAN FILE NUMBER FOR PRINTER OUTPUT.
C         (ITAPE.LE.0 => NO PRINTER OUTPUT.)
C MAXIT : MAXIMUM NUMBER OF ITERATIONS.
C NTERM : NUMBER OF CONSECUTIVE ITERATIONS FOR WHICH
C         RSQ MUST CHANGE LESS THAN DELCOR FOR CONVERGENCE.
C SPAN, ALPHA : SUPER SMOOTHER PARAMETERS (SEE BELOW).
C BIG : A LARGE REPRESENTABLE FLOATING POINT NUMBER.
C
C------------------------------------------------------------------
C
      subroutine supsmu (n,x,y,w,iper,span,alpha,smo,sc)

       Note, although the following comments are extracted
from a relatively old version, the arguements are the same
as those in all subsequent versions.   Pat Neville, 26 Sept 85

c------------------------------------------------------------------
c
c super smoother (friedman and stuetzle, 1984).
c
c version 3/10/84
c
c coded by: j. h. friedman
c           department of statistics and
c           stanford linear accelerator center
c           stanford university
c           stanford ca. 94305
c
c input:
c    n : number of observations (x,y - pairs).
c    x(n) : ordered abscissa values.
c    y(n) : corresponding ordinate (response) values.
c    w(n) : weight for each (x,y) observation.
c    iper : periodic variable flag.
c       iper=1 => x is ordered interval variable.
c       iper=2 => x is a periodic variable with values
c                 in the range (0.0,1.0) and peroid 1.0.
c    span : smoother span (fraction of observations in window).
c           span=0.0 => automatic (variable) span selection.
c    alpha : controles high frequency (small span) penality
c            used with automatic span selection (base tone control).
c            (alpha.le.0.0 or alpha.gt.10.0 => no effect.)
c output:
c   smo(n) : smoothed ordinate (response) values.
c scratch:
c   sc(n,7) : internal working storage.
c
c note:
c    for small samples (n < 40) or if there are substantial serial
c    correlations between obserations close in x - value, then
c    a prespecified fixed span smoother (span > 0) should be
c    used. reasonable span values are 0.3 to 0.5.
c
c------------------------------------------------------------------




      subroutine sort (v,a,ii,jj)
c------------------------------------------------------------------
c
c     applies to a and v the permutation vector which sorts v into
c     increasing order.  only elements from ii to jj are considered.
c     arrays iu(k) and il(k) permit sorting up to 2**(k+1)-1 elements
c
c     this is a modification of cacm algorithm #347 by r. c. singleton,
c     which is a modified hoare quicksort.
c
c------------------------------------------------------------------