[go: up one dir, main page]

Menu

[2722f9]: / R / msm / R / boot.R  Maximize  Restore  History

Download this file

248 lines (224 with data), 12.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
### Take a bootstrap sample from the data contained in a fitted msm
### model. Sample pairs of consecutive observations, i.e. independent
### transitions. Not applicable if model is hidden or some states are
### censored.
bootdata.trans.msm <- function(x) {
dat <- if (!is.null(x$data.orig)) x$data.orig else x$data
subj.num <- match(dat$subject, unique(dat$subject))
nextsubj <- c(subj.num[2:length(subj.num)], Inf)
lastsubj <- subj.num != nextsubj
inds <- sample(which(!lastsubj), replace=TRUE)
data.boot <- as.data.frame(matrix(nrow=length(inds)*2, ncol=length(dat$covlabels.orig) + 4))
state.name <- deparse(as.list(x$call$formula)[[2]])
time.name <- deparse(as.list(x$call$formula)[[3]])
colnames(data.boot) <- c("subject.name", time.name, state.name, "obstype.name", dat$covlabels.orig)
data.boot[,state.name] <- as.vector(rbind(dat$state[inds], dat$state[inds+1]))
# in the bootstrap data, label each transition as being from a different subject
data.boot[,"subject.name"] <- rep(seq(along=inds), each=2)
data.boot[,time.name] <- as.vector(rbind(dat$time[inds], dat$time[inds+1]))
data.boot[,"obstype.name"] <- as.vector(rbind(dat$obstype.obs[inds], dat$obstype.obs[inds+1]))
for (j in dat$covlabels.orig) {
frominds <- seq(1, 2*length(inds)-1, 2)
data.boot[frominds, j] <- data.boot[frominds+1,j] <- dat$cov.orig[inds, j]
if (dat$covdata$covfactor[j])
data.boot[,j] <- factor(data.boot[,j], labels=levels(dat$cov.orig[,j]))
}
colnames(data.boot) <- gsub("factor\\((.+)\\)", "\\1", colnames(data.boot))
data.boot
}
### Take a bootstrap sample from the data contained in a fitted msm
### model. Sample subjects. Used for hidden models or models with
### censoring, in which the transitions within a subject are not
### independent.
bootdata.subject.msm <- function(x) {
dat <- if (!is.null(x$data.orig)) x$data.orig else x$data
subj.num <- match(dat$subject, unique(dat$subject))
subjs <- sample(unique(subj.num), replace=TRUE)
inds <- new.subj <- NULL
for (i in seq(along=subjs)) {
subj.inds <- which(subj.num == subjs[i])
inds <- c(inds, subj.inds)
new.subj <- c(new.subj, rep(i, length(subj.inds)))
}
data.boot <- as.data.frame(matrix(nrow=length(inds), ncol=length(dat$covlabels.orig) + 5))
state.name <- deparse(as.list(x$call$formula)[[2]])
time.name <- deparse(as.list(x$call$formula)[[3]])
colnames(data.boot) <- c("subject.name", time.name, state.name, "obstype.name", "obstrue.name", dat$covlabels.orig)
data.boot[,"subject.name"] <- new.subj
data.boot[,time.name] <- dat$time[inds]
data.boot[,state.name] <- dat$state[inds]
data.boot[,"obstype.name"] <- dat$obstype[inds]
data.boot[,"obstrue.name"] <- dat$obstrue[inds]
for (j in dat$covlabels.orig) {
data.boot[, j] <- dat$cov.orig[inds, j]
if (dat$covdata$covfactor[j]){
data.boot[,j] <- factor(data.boot[,j], labels=levels(dat$cov.orig[,j]))
}
}
colnames(data.boot) <- gsub("factor\\((.+)\\)", "\\1", colnames(data.boot))
data.boot
}
### Given a fitted msm model, draw a bootstrap dataset, refit the
### model, and optionally compute a statistic on the refitted model.
### Repeat B times, store the results in a list.
### msm objects tend to be large, so it is advised to compute a statistic on them by specifying "stat", instead
### of using this function to return a list of refitted msm objects.
### To compute more than one statistic, specify, e.g. stat=function(x)list(stat1(x),stat2(x))
### Some of the arguments to the msm call might be user-defined objects.
### e.g. qmatrix, ematrix, hmodel, ...
### Put in help file that these must be in the working environment.
### a) if call supplied as factor(), strip factor() from name.
boot.msm <- function(x, stat=pmatrix.msm, B=1000, file=NULL){
boot.list <- vector(B, mode="list")
if (!is.null(x$call$subject)) x$call$subject <- substitute(subject.name)
if (!is.null(x$call$obstype)) x$call$obstype <- substitute(obstype.name)
if (!is.null(x$call$obstrue)) x$call$obstrue <- substitute(obstrue.name)
for (i in 1:B) {
boot.data <- if (x$hmodel$hidden || x$cmodel$ncens) bootdata.subject.msm(x) else bootdata.trans.msm(x)
x$call$data <- substitute(boot.data)
boot.list[[i]] <- try(eval(x$call))
if (!is.null(stat))
boot.list[[i]] <- stat(boot.list[[i]])
if (!is.null(file)) save(boot.list, file=file)
}
boot.list
}
### Utilities for calculating bootstrap CIs for particular statistics
qematrix.ci.msm <- function(x, covariates="mean", intmisc="intens", sojourn=FALSE, cl=0.95, B=1000) {
q.list <- boot.msm(x, function(x)qematrix.msm(x=x, covariates=covariates, intmisc=intmisc)$estimates, B)
q.array <- array(unlist(q.list), dim=c(dim(q.list[[1]]), length(q.list)))
q.ci <- apply(q.array, c(1,2), function(x)(c(quantile(x, c(0.5 - cl/2, 0.5 + cl/2)), sd(x))))
q.ci <- aperm(q.ci, c(2,3,1))
if (sojourn) {
soj.array <- apply(q.array, 3, function(x) -1/diag(x))
soj.ci <- apply(soj.array, 1, function(x)(c(quantile(x, c(0.5 - cl/2, 0.5 + cl/2)), sd(x))))
list(q=q.ci, soj=soj.ci)
}
else q.ci
}
qratio.ci.msm <- function(x, ind1, ind2, covariates="mean", cl=0.95, B=1000) {
q.list <- boot.msm(x, function(x)qratio.msm(x=x, ind1=ind1, ind2=ind2, covariates=covariates)["estimate"], B)
q.vec <- unlist(q.list)
c(quantile(q.vec, c(0.5 - cl/2, 0.5 + cl/2)), sd(q.vec))
}
pmatrix.ci.msm <- function(x, t, covariates="mean", cl=0.95, B=1000) {
p.list <- boot.msm(x, function(x)pmatrix.msm(x=x, t=t, covariates=covariates,ci="none"), B)
p.array <- array(unlist(p.list), dim=c(dim(p.list[[1]]), length(p.list)))
p.ci <- apply(p.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
aperm(p.ci, c(2,3,1))
}
pmatrix.piecewise.ci.msm <- function(x, t1, t2, times, covariates="mean", cl=0.95, B=1000) {
p.list <- boot.msm(x, function(x)pmatrix.piecewise.msm(x=x, t1=t1, t2=t2, times=times, covariates=covariates,ci="none"), B)
p.array <- array(unlist(p.list), dim=c(dim(p.list[[1]]), length(p.list)))
p.ci <- apply(p.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
aperm(p.ci, c(2,3,1))
}
totlos.ci.msm <- function(x, start=1, fromt=0, tot=Inf, covariates="mean", cl=0.95, B=1000, ...) {
t.list <- boot.msm(x, function(x)totlos.msm(x, start, fromt, tot, covariates), B)
t.array <- do.call("rbind", t.list)
apply(t.array, 2, function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
}
expected.ci.msm <- function(x,
times=NULL,
timezero=NULL,
initstates=NULL,
covariates="mean",
misccovariates="mean",
piecewise.times=NULL,
piecewise.covariates=NULL,
risk=NULL,
cl=0.95, B=1000) {
if(is.null(risk)) risk <- observed.msm(x)$risk
e.list <- boot.msm(x, function(x){
expected.msm(x, times, timezero, initstates, covariates, misccovariates, piecewise.times, piecewise.covariates, risk)
}, B)
e.tab.array <- array(unlist(lapply(e.list, function(x)x[[1]])), dim=c(dim(e.list[[1]][[1]]), length(e.list)))
e.perc.array <- array(unlist(lapply(e.list, function(x)x[[2]])), dim=c(dim(e.list[[1]][[2]]), length(e.list)))
e.tab.ci <- apply(e.tab.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
e.perc.ci <- apply(e.perc.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
res <- list(aperm(e.tab.ci, c(2,3,1)), aperm(e.perc.ci, c(2,3,1)))
names(res) <- c("Expected", "Expected percentages")
res
}
### Compute a CI for a statistic using a sample from the assumed MVN
### distribution of MLEs of log Q, logit E and covariate effects on these
### Not user visible: only support a limited set of statistics based on Q matrix and E matrix.
normboot.msm <- function(x, stat, B=100) {
## simulate from vector of unreplicated parameters, to avoid numerical problems with rmvnorm when lots of correlations are 1
if (!x$foundse) stop("Asymptotic standard errors not available in fitted model")
sim <- rmvnorm(B, x$opt$par, solve(0.5 * x$opt$hessian))
params <- matrix(nrow=B, ncol=x$paramdata$npars) # replicate constrained parameters.
params[,x$paramdata$optpars] <- sim
params[,x$paramdata$hmmpars] <- msm.mninvlogit.transform(x$paramdata$params[x$paramdata$hmmpars], x$hmodel$plabs, x$hmodel$parstate)
params <- params[, !duplicated(abs(x$paramdata$constr))][, abs(x$paramdata$constr)]*rep(sign(x$paramdata$constr), each=B)
sim.stat <- vector(B, mode="list")
for (i in 1:B) {
x.rep <- x
x.rep$paramdata$params <- params[i,]
output <- msm.form.output("intens", x.rep$qmodel, x.rep$qcmodel, x.rep$paramdata)
x.rep$Qmatrices <- output$Matrices
if (x$emodel$misc) {
output <- msm.form.output("misc", x.rep$emodel, x.rep$ecmodel, x.rep$paramdata)
x.rep$Ematrices <- output$Matrices
names(x.rep$Ematrices)[1] <- "logitbaseline"
}
sim.stat[[i]] <- stat(x.rep)
}
sim.stat
}
qematrix.normci.msm <- function(x, covariates="mean", intmisc="intens", sojourn=FALSE, cl=0.95, B=1000) {
q.list <- normboot.msm(x, function(x)qematrix.msm(x=x, covariates=covariates, intmisc=intmisc, ci="none"), B)
q.array <- array(unlist(q.list), dim=c(dim(q.list[[1]]), length(q.list)))
q.ci <- apply(q.array, c(1,2), function(x)(c(quantile(x, c(0.5 - cl/2, 0.5 + cl/2)), sd(x))))
q.ci <- aperm(q.ci, c(2,3,1))
if (sojourn) {
soj.array <- apply(q.array, 3, function(x) -1/diag(x))
soj.ci <- apply(soj.array, 1, function(x)(c(quantile(x, c(0.5 - cl/2, 0.5 + cl/2)), sd(x))))
list(q=q.ci, soj=soj.ci)
}
else q.ci
}
qratio.normci.msm <- function(x, ind1, ind2, covariates="mean", cl=0.95, B=1000) {
q.list <- normboot.msm(x, function(x)qratio.msm(x=x, ind1=ind1, ind2=ind2, covariates=covariates)["estimate"], B)
q.vec <- unlist(q.list)
c(quantile(q.vec, c(0.5 - cl/2, 0.5 + cl/2)), sd(q.vec))
}
pmatrix.normci.msm <- function(x, t, covariates="mean", cl=0.95, B=1000) {
p.list <- normboot.msm(x, function(x)pmatrix.msm(x=x, t=t, covariates=covariates, ci="none"), B)
p.array <- array(unlist(p.list), dim=c(dim(p.list[[1]]), length(p.list)))
p.ci <- apply(p.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
aperm(p.ci, c(2,3,1))
}
pmatrix.piecewise.normci.msm <- function(x, t1, t2, times, covariates="mean", cl=0.95, B=1000) {
p.list <- normboot.msm(x, function(x)pmatrix.piecewise.msm(x=x, t1=t1, t2=t2, times=times, covariates=covariates, ci="none"), B)
p.array <- array(unlist(p.list), dim=c(dim(p.list[[1]]), length(p.list)))
p.ci <- apply(p.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
aperm(p.ci, c(2,3,1))
}
totlos.normci.msm <- function(x, start=1, fromt=0, tot=Inf, covariates="mean", cl=0.95, B=1000, ...) {
t.list <- normboot.msm(x, function(x)totlos.msm(x, start, fromt, tot, covariates, ci="none"), B)
t.array <- do.call("rbind", t.list)
apply(t.array, 2, function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
}
expected.normci.msm <- function(x,
times=NULL,
timezero=NULL,
initstates=NULL,
covariates="mean",
misccovariates="mean",
piecewise.times=NULL,
piecewise.covariates=NULL,
risk=NULL,
cl=0.95, B=1000) {
if(is.null(risk)) risk <- observed.msm(x)$risk
e.list <- normboot.msm(x, function(x){
expected.msm(x, times, timezero, initstates, covariates, misccovariates, piecewise.times, piecewise.covariates, risk)
}, B)
e.tab.array <- array(unlist(lapply(e.list, function(x)x[[1]])), dim=c(dim(e.list[[1]][[1]]), length(e.list)))
e.perc.array <- array(unlist(lapply(e.list, function(x)x[[2]])), dim=c(dim(e.list[[1]][[2]]), length(e.list)))
e.tab.ci <- apply(e.tab.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
e.perc.ci <- apply(e.perc.array, c(1,2), function(x)(quantile(x, c(0.5 - cl/2, 0.5 + cl/2))))
res <- list(aperm(e.tab.ci, c(2,3,1)), aperm(e.perc.ci, c(2,3,1)))
names(res) <- c("Expected", "Expected percentages")
res
}