[go: up one dir, main page]

Menu

[r74]: / trunk / rlgo / RlTrainer.cpp  Maximize  Restore  History

Download this file

199 lines (165 with data), 6.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//----------------------------------------------------------------------------
/** @file RlTrainer.cpp
See RlTrainer.h
*/
//----------------------------------------------------------------------------
#include "SgSystem.h"
#include "RlTrainer.h"
#include "RlEvaluator.h"
#include "RlHistory.h"
#include "RlLearningRule.h"
using namespace std;
// reset history and count num games
//----------------------------------------------------------------------------
RlTrainer::RlTrainer(GoBoard& board, RlLearningRule* rule,
RlHistory* history, RlEvaluator* evaluator)
: RlAutoObject(board),
m_learningRule(rule),
m_history(history),
m_evaluator(evaluator),
m_episodes(EP_CURRENT),
m_numReplays(1),
m_updateRoot(true),
m_temporalDifference(2),
m_refreshValues(true),
m_interleave(true),
m_updateWeights(true)
{
}
void RlTrainer::LoadSettings(istream& settings)
{
int version;
settings >> RlVersion(version, 0, 0);
settings >> RlSetting<RlLearningRule*>("LearningRule", m_learningRule);
settings >> RlSetting<RlHistory*>("History", m_history);
settings >> RlSetting<RlEvaluator*>("Evaluator", m_evaluator);
settings >> RlSetting<int>("Episodes", m_episodes);
settings >> RlSetting<int>("NumReplays", m_numReplays);
settings >> RlSetting<bool>("UpdateRoot", m_updateRoot);
settings >> RlSetting<int>("TemporalDifference", m_temporalDifference);
settings >> RlSetting<bool>("RefreshValues", m_refreshValues);
settings >> RlSetting<bool>("Interleave", m_interleave);
settings >> RlSetting<bool>("UpdateWeights", m_updateWeights);
if (m_temporalDifference > RlLearningRule::MAX_TD)
throw SgException("Temporal difference exceeds maximum");
}
void RlTrainer::RefreshValue(RlState& state)
{
if (!state.Terminal())
m_evaluator->RefreshValue(state);
}
int RlTrainer::SelectEpisode(int replay)
{
switch (m_episodes)
{
case EP_CURRENT:
return 0;
case EP_LAST:
return replay % m_history->GetNumEpisodes();
case EP_RANDOM:
return SgRandom::Global().Int(
m_history->GetNumEpisodes());
default:
throw SgException("Unknown case for selecting episodes");
return -1;
}
}
//----------------------------------------------------------------------------
RlEpisodicTrainer::RlEpisodicTrainer(GoBoard& board, RlLearningRule* rule,
RlHistory* history, RlEvaluator* evaluator)
: RlTrainer(board, rule, history, evaluator)
{
}
void RlEpisodicTrainer::Train()
{
m_learningRule->SetUpdateWeights(m_updateWeights);
int gap = m_interleave ? 1 : m_temporalDifference;
int start = m_updateRoot ? 0 : 1;
for (int i = 0; i < m_numReplays; ++i)
{
int offset = 0;
if (!m_interleave && m_temporalDifference > 1)
offset = SgRandom::Global().Int(m_temporalDifference);
int episode = SelectEpisode(i);
m_learningRule->Start(m_history, episode);
Sweep(episode, start, offset, gap);
m_learningRule->End();
}
}
//----------------------------------------------------------------------------
IMPLEMENT_OBJECT(RlForwardTrainer);
RlForwardTrainer::RlForwardTrainer(GoBoard& board, RlLearningRule* rule,
RlHistory* history, RlEvaluator* evaluator)
: RlEpisodicTrainer(board, rule, history, evaluator)
{
}
void RlForwardTrainer::Sweep(int episode, int start, int offset, int gap)
{
// Replay the specified game from the history in a forwards pass
for (int t1 = start + offset; t1 < m_history->GetLength(episode); t1 += gap)
{
if (m_history->GetState(t1, episode).Terminal())
continue;
int t2 = t1 + m_temporalDifference;
if (m_refreshValues)
{
RefreshValue(m_history->GetState(t1, episode));
RefreshValue(m_history->GetState(t2, episode));
}
m_learningRule->DoLearn(m_history, episode, t1, t2);
}
}
//----------------------------------------------------------------------------
IMPLEMENT_OBJECT(RlBackwardTrainer);
RlBackwardTrainer::RlBackwardTrainer(GoBoard& board, RlLearningRule* rule,
RlHistory* history, RlEvaluator* evaluator)
: RlEpisodicTrainer(board, rule, history, evaluator)
{
}
void RlBackwardTrainer::Sweep(int episode, int start, int offset, int gap)
{
// Replay the specified game from the history in a backwards pass
for (int t1 = m_history->GetLength(episode) - 1 - offset;
t1 >= start; t1 -= gap)
{
if (m_history->GetState(t1).Terminal())
continue;
int t2 = t1 + m_temporalDifference;
if (m_refreshValues)
{
RefreshValue(m_history->GetState(t1, episode));
RefreshValue(m_history->GetState(t2, episode));
}
m_learningRule->DoLearn(m_history, episode, t1, t2);
}
}
//----------------------------------------------------------------------------
IMPLEMENT_OBJECT(RlRandomTrainer);
RlRandomTrainer::RlRandomTrainer(GoBoard& board, RlLearningRule* rule,
RlHistory* history, RlEvaluator* evaluator)
: RlTrainer(board, rule, history, evaluator)
{
}
void RlRandomTrainer::Train()
{
// Replay randomly selected transitions from the history
m_learningRule->SetUpdateWeights(m_updateWeights);
int start = m_updateRoot ? 0 : 1;
for (int i = 0; i < m_numReplays; ++i)
{
// Select a random transition from the history
int episode = SelectEpisode(i);
int t1 = SgRandom::Global().Range(start,
m_history->GetLength(episode));
int t2 = t1 + m_temporalDifference;
if (m_history->GetState(t1).Terminal())
continue;
if (m_refreshValues)
{
RefreshValue(m_history->GetState(t1, episode));
RefreshValue(m_history->GetState(t2, episode));
}
m_learningRule->DoLearn(m_history, episode, t1, t2);
}
}
//----------------------------------------------------------------------------