[go: up one dir, main page]

Menu

[r225]: / tags / 0.3.0 / psqtab.h  Maximize  Restore  History

Download this file

88 lines (79 with data), 5.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#ifndef PSQTAB_H_INCLUDED
#define PSQTAB_H_INCLUDED
#include "types.h"
#define S(mg, eg) make_score(mg, eg)
/// PSQT[PieceType][Square] contains Piece-Square scores. For each piece type on
/// a given square a (middlegame, endgame) score pair is assigned. PSQT is defined
/// for the white side and the tables are symmetric for the black side.
static const Score PSQT[][SQUARE_NB] =
{
{ },
{
// Pawn
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0),
S(-20, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S(-20, 0),
S(-20, 0), S( 0, 0), S(10, 0), S(20, 0), S(20, 0), S(10, 0), S( 0, 0), S(-20, 0),
S(-20, 0), S( 0, 0), S(20, 0), S(40, 0), S(40, 0), S(20, 0), S( 0, 0), S(-20, 0),
S(-20, 0), S( 0, 0), S(10, 0), S(20, 0), S(20, 0), S(10, 0), S( 0, 0), S(-20, 0),
S(-20, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S(-20, 0),
S(-20, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S(-20, 0),
S( 0, 0), S( 0, 0), S( 0, 0), S( 0, 0), S(0, 0), S( 0, 0), S( 0, 0), S( 0, 0)
},
{
// Knight
S(-144,-98), S(-109,-83), S(-85,-51), S(-73,-16), S(-73,-16), S(-85,-51), S(-109,-83), S(-144,-98),
S( -88,-68), S( -43,-53), S(-19,-21), S( -7, 14), S( -7, 14), S(-19,-21), S( -43,-53), S( -88,-68),
S( -69,-53), S( -24,-38), S( 0, -6), S( 12, 29), S( 12, 29), S( 0, -6), S( -24,-38), S( -69,-53),
S( -28,-42), S( 17,-27), S( 41, 5), S( 53, 40), S( 53, 40), S( 41, 5), S( 17,-27), S( -28,-42),
S( -30,-42), S( 15,-27), S( 39, 5), S( 51, 40), S( 51, 40), S( 39, 5), S( 15,-27), S( -30,-42),
S( -10,-53), S( 35,-38), S( 59, -6), S( 71, 29), S( 71, 29), S( 59, -6), S( 35,-38), S( -10,-53),
S( -64,-68), S( -19,-53), S( 5,-21), S( 17, 14), S( 17, 14), S( 5,-21), S( -19,-53), S( -64,-68),
S(-200,-98), S( -65,-83), S(-41,-51), S(-29,-16), S(-29,-16), S(-41,-51), S( -65,-83), S(-200,-98)
},
{
// Bishop
S(-54,-65), S(-27,-42), S(-34,-44), S(-43,-26), S(-43,-26), S(-34,-44), S(-27,-42), S(-54,-65),
S(-29,-43), S( 8,-20), S( 1,-22), S( -8, -4), S( -8, -4), S( 1,-22), S( 8,-20), S(-29,-43),
S(-20,-33), S( 17,-10), S( 10,-12), S( 1, 6), S( 1, 6), S( 10,-12), S( 17,-10), S(-20,-33),
S(-19,-35), S( 18,-12), S( 11,-14), S( 2, 4), S( 2, 4), S( 11,-14), S( 18,-12), S(-19,-35),
S(-22,-35), S( 15,-12), S( 8,-14), S( -1, 4), S( -1, 4), S( 8,-14), S( 15,-12), S(-22,-35),
S(-28,-33), S( 9,-10), S( 2,-12), S( -7, 6), S( -7, 6), S( 2,-12), S( 9,-10), S(-28,-33),
S(-32,-43), S( 5,-20), S( -2,-22), S(-11, -4), S(-11, -4), S( -2,-22), S( 5,-20), S(-32,-43),
S(-49,-65), S(-22,-42), S(-29,-44), S(-38,-26), S(-38,-26), S(-29,-44), S(-22,-42), S(-49,-65)
},
{
// Rook
S(-22, 3), S(-17, 3), S(-12, 3), S(-8, 3), S(-8, 3), S(-12, 3), S(-17, 3), S(-22, 3),
S(-22, 3), S( -7, 3), S( -2, 3), S( 2, 3), S( 2, 3), S( -2, 3), S( -7, 3), S(-22, 3),
S(-22, 3), S( -7, 3), S( -2, 3), S( 2, 3), S( 2, 3), S( -2, 3), S( -7, 3), S(-22, 3),
S(-22, 3), S( -7, 3), S( -2, 3), S( 2, 3), S( 2, 3), S( -2, 3), S( -7, 3), S(-22, 3),
S(-22, 3), S( -7, 3), S( -2, 3), S( 2, 3), S( 2, 3), S( -2, 3), S( -7, 3), S(-22, 3),
S(-22, 3), S( -7, 3), S( -2, 3), S( 2, 3), S( 2, 3), S( -2, 3), S( -7, 3), S(-22, 3),
S(-11, 3), S( 4, 3), S( 9, 3), S(13, 3), S(13, 3), S( 9, 3), S( 4, 3), S(-11, 3),
S(-22, 3), S(-17, 3), S(-12, 3), S(-8, 3), S(-8, 3), S(-12, 3), S(-17, 3), S(-22, 3)
},
{
// Queen
S(-2,-80), S(-2,-54), S(-2,-42), S(-2,-30), S(-2,-30), S(-2,-42), S(-2,-54), S(-2,-80),
S(-2,-54), S( 8,-30), S( 8,-18), S( 8, -6), S( 8, -6), S( 8,-18), S( 8,-30), S(-2,-54),
S(-2,-42), S( 8,-18), S( 8, -6), S( 8, 6), S( 8, 6), S( 8, -6), S( 8,-18), S(-2,-42),
S(-2,-30), S( 8, -6), S( 8, 6), S( 8, 18), S( 8, 18), S( 8, 6), S( 8, -6), S(-2,-30),
S(-2,-30), S( 8, -6), S( 8, 6), S( 8, 18), S( 8, 18), S( 8, 6), S( 8, -6), S(-2,-30),
S(-2,-42), S( 8,-18), S( 8, -6), S( 8, 6), S( 8, 6), S( 8, -6), S( 8,-18), S(-2,-42),
S(-2,-54), S( 8,-30), S( 8,-18), S( 8, -6), S( 8, -6), S( 8,-18), S( 8,-30), S(-2,-54),
S(-2,-80), S(-2,-54), S(-2,-42), S(-2,-30), S(-2,-30), S(-2,-42), S(-2,-54), S(-2,-80)
},
{
// King
S(298, 27), S(332, 81), S(273,108), S(225,116), S(225,116), S(273,108), S(332, 81), S(298, 27),
S(287, 74), S(321,128), S(262,155), S(214,163), S(214,163), S(262,155), S(321,128), S(287, 74),
S(224,111), S(258,165), S(199,192), S(151,200), S(151,200), S(199,192), S(258,165), S(224,111),
S(196,135), S(230,189), S(171,216), S(123,224), S(123,224), S(171,216), S(230,189), S(196,135),
S(173,135), S(207,189), S(148,216), S(100,224), S(100,224), S(148,216), S(207,189), S(173,135),
S(146,111), S(180,165), S(121,192), S( 73,200), S( 73,200), S(121,192), S(180,165), S(146,111),
S(119, 74), S(153,128), S( 94,155), S( 46,163), S( 46,163), S( 94,155), S(153,128), S(119, 74),
S( 98, 27), S(132, 81), S( 73,108), S( 25,116), S( 25,116), S( 73,108), S(132, 81), S( 98, 27)
}
};
#undef S
#endif // #ifndef PSQTAB_H_INCLUDED