function [c,Ls,g]=wmdct(f,g,M,varargin)
%WMDCT Windowed MDCT transform
% Usage: c=wmdct(f,g,M);
% c=wmdct(f,g,M,L);
% [c,Ls]=wmdct(...);
%
% Input parameters:
% f : Input data
% g : Window function.
% M : Number of bands.
% L : Length of transform to do.
% Output parameters:
% c : $M \times N$ array of coefficients.
% Ls : Length of input signal.
%
% `wmdct(f,g,M)` computes a Windowed Modified Discrete Cosine Transform with
% *M* bands and window *g*.
%
% The length of the transform will be the smallest possible that is
% larger than the signal. *f* will be zero-extended to the length of the
% transform. If *f* is a matrix, the transformation is applied to each column.
% *g* must be whole-point even.
%
% The window *g* may be a vector of numerical values, a text string or a
% cell array. See the help of |wilwin| for more details.
%
% `wmdct(f,g,M,L)` computes the MDCT transform as above, but does
% a transform of length *L*. *f* will be cut or zero-extended to length *L*
% before the transform is done.
%
% `[c,Ls]=wmdct(f,g,M)` or [c,Ls]=wmdct(f,g,M,L)` additionally returns the
% length of the input signal *f*. This is handy for reconstruction::
%
% [c,Ls]=wmdct(f,g,M);
% fr=iwmdct(c,gd,M,Ls);
%
% will reconstruct the signal *f* no matter what the length of *f* is, provided
% that *gd* is a dual Wilson window of *g*.
%
% `[c,Ls,g]=wmdct(...)` additionally outputs the window used in the
% transform. This is useful if the window was generated from a description
% in a string or cell array.
%
% The WMDCT is sometimes known as an odd-stacked cosine modulated filter
% bank. The WMDCT defined by this routine is slightly different from the
% most common definition of the WMDCT, in order to be able to use the
% same window functions as the Wilson transform.
%
% Assume that the following code has been executed for a column vector f
% of length L::
%
% c=wmdct(f,g,M); % Compute the WMDCT of f.
% N=size(c,2); % Number of translation coefficients.
%
% The following holds for $m=0,\ldots,M-1$ and $n=0,\ldots,N-1$:
%
% If $m+n$ is even:
%
% .. L-1
% c(m+1,n+1) = sum f(l+1)*cos(pi*(m+.5)*l/M+pi/4)*g(l-n*M+1)
% l=0
%
% .. math:: c\left(m+1,n+1\right) = \sqrt{2}\sum_{l=0}^{L-1}f(l+1)\cos\left(\frac{\pi}{M}\left(m+\frac{1}{2}\right)l+\frac{\pi}{4}\right)g(l-nM+1)
%
% If $m+n$ is odd:
%
% .. L-1
% c(m+1,n+1) = sum f(l+1)*sin(pi*(m+.5)*l/M+pi/4)*g(l-n*M+1)
% l=0
%
% .. math:: c\left(m+1,n+1\right) =
% \sqrt{2}\sum_{l=0}^{L-1}f(l+1)\sin\left(\frac{\pi}{M}\left(m+\frac{1}{2}\right)l+\frac{\pi}{4}\right)g(l-nM+1)
%
% Examples:
% ---------
%
% The following example shows the WMDCT coefficients (128 channels) of the
% |greasy| test signal:::
%
% fs=16000; % Sampling rate
% c=wmdct(greasy,{'hann',0.02*fs},128);
% plotwmdct(c,fs,90);
%
% Compare the visual difference with the redundant expansion of the
% same signal given in the example of the |dgtreal| function.
%
% See also: iwmdct, wilwin, dwilt, wildual, wilorth
%
% References: prbr86 prjobr87 ma92 bohl96-1
% AUTHOR: Peter L. Søndergaard
% TESTING: TEST_WMDCT
% REFERENCE: REF_WMDCT
if nargin<3
error('%s: Too few input parameters.',upper(mfilename));
end;
definput.keyvals.L=[];
definput.keyvals.dim=[];
[flags,kv,L]=ltfatarghelper({'L'},definput,varargin);
%% ----- step 1 : Verify f and determine its length -------
% Change f to correct shape.
[f,dummy,Ls,W,dim,permutedsize,order]=assert_sigreshape_pre(f,[],kv.dim,upper(mfilename));
%% ------ step 2: Verify a, M and L
if isempty(L)
% ----- step 2b : Verify a, M and get L from the signal length f----------
L=dwiltlength(Ls,M);
else
% ----- step 2a : Verify a, M and get L
Luser=dwiltlength(L,M);
if Luser~=L
error(['%s: Incorrect transform length L=%i specified. Next valid length ' ...
'is L=%i. See the help of DWILTLENGTH for the requirements.'],...
upper(mfilename),L,Luser);
end;
end;
%% ----- step 3 : Determine the window
[g,info]=wilwin(g,M,L,upper(mfilename));
if L<info.gl
error('%s: Window is too long.',upper(mfilename));
end;
%% ----- step 4: final cleanup ---------------
f=postpad(f,L);
% If the signal is single precision, make the window single precision as
% well to avoid mismatches.
if isa(f,'single')
g=single(g);
end;
%% ----- Call the computational subroutines.
c = comp_dwiltiii(f,g,M);
%% ----- reorder coefficients to correct final layout
order=assert_groworder(order);
permutedsize=[M,L/M,permutedsize(2:end)];
c=assert_sigreshape_post(c,dim,permutedsize,order);