[go: up one dir, main page]

Menu

[17deec]: / gabor / dgt2.m  Maximize  Restore  History

Download this file

101 lines (93 with data), 2.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
function [c,Ls]=dgt2(f,g1,p3,p4,p5,p6)
%DGT2 2-D Discrete Gabor transform
% Usage: c=dgt2(f,g,a,M);
% c=dgt2(f,g1,g2,[a1,a2],[M1,M2]);
% c=dgt2(f,g1,g2,[a1,a2],[M1,M2],[L1,L2]);
% [c,Ls]=dgt2(f,g1,g2,[a1,a2],[M1,M2]);
% [c,Ls]=dgt2(f,g1,g2,[a1,a2],[M1,M2],[L1,L2]);
%
% Input parameters:
% f : Input data, matrix.
% g,g1,g2 : Window functions.
% a,a1,a2 : Length of time shifts.
% M,M1,M2 : Number of modulations.
% L1,L2 : Length of transform to do
%
% Output parameters:
% c : array of coefficients.
% Ls : Original size of input matrix.
%
% `dgt2(f,g,a,M)` will calculate a separable two-dimensional discrete
% Gabor transformation of the input signal *f* with respect to the window
% *g* and parameters *a* and *M*.
%
% For each dimension, the length of the transform will be the smallest
% possible that is larger than the length of the signal along that dimension.
% f will be appropriately zero-extended.
%
% `dgt2(f,g,a,M,L)` computes a Gabor transform as above, but does
% a transform of length *L* along each dimension. *f* will be cut or
% zero-extended to length *L* before the transform is done.
%
% `[c,Ls]=dgt2(f,g,a,M)` or `[c,Ls]=dgt2(f,g,a,M,L)` additionally returns
% the length of the input signal *f*. This is handy for reconstruction::
%
% [c,Ls]=dgt2(f,g,a,M);
% fr=idgt2(c,gd,a,Ls);
%
% will reconstruct the signal *f* no matter what the size of *f* is, provided
% that *gd* is a dual window of *g*.
%
% `dgt2(f,g1,g2,a,M)` makes it possible to use a different window along the
% two dimensions.
%
% The parameters *a*, *M*, *L* and *Ls* can also be vectors of length 2.
% In this case the first element will be used for the first dimension
% and the second element will be used for the second dimension.
%
% The output *c* has *4* or *5* dimensions. The dimensions index the
% following properties:
%
% 1. Number of translation along 1st dimension of input.
%
% 2. Number of channel along 1st dimension of input
%
% 3. Number of translation along 2nd dimension of input.
%
% 4. Number of channel along 2nd dimension of input
%
% 5. Plane number, corresponds to 3rd dimension of input.
%
% See also: dgt, idgt2, gabdual
complainif_argnonotinrange(nargin,4,6,mfilename);
L=[];
if prod(size(p3))>2
% Two windows was specified.
g2=p3;
a=p4;
M=p5;
if nargin==6
L=p6;
end;
else
g2=g1;
a=p3;
M=p4;
if nargin==5
L=p5;
end;
end;
if isempty(L)
L1=[];
L2=[];
else
L1=L(1);
L2=L(2);
end;
% Expand 'a' and M if necessary to two elements
a=bsxfun(@times,a,[1 1]);
M=bsxfun(@times,M,[1 1]);
Ls=size(f);
Ls=Ls(1:2);
c=dgt(f,g1,a(1),M(1),L1);
c=dgt(c,g2,a(2),M(2),L2,'dim',3);