function [f]=comp_idwilt(coef,g)
%COMP_IDWILT Compute Inverse discrete Wilson transform.
%
% This is a computational routine. Do not call it
% directly.
% AUTHOR : Peter L. Søndergaard.
% TESTING: OK
% REFERENCE: OK
M=size(coef,1)/2;
N=2*size(coef,2);
W=size(coef,3);
a=M;
L=N*a;
coef2=zeros(2*M,N,W,assert_classname(coef,g));
% First and middle modulation are transferred unchanged.
coef2(1,1:2:N,:) = coef(1,:,:);
if mod(M,2)==0
coef2(M+1,1:2:N,:) = coef(M+1,:,:);
else
coef2(M+1,2:2:N,:) = coef(M+1,:,:);
end;
if M>2
% cosine, first column.
coef2(3:2:M,1:2:N,:) = 1/sqrt(2)*coef(3:2:M,:,:);
coef2(2*M-1:-2:M+2,1:2:N,:) = 1/sqrt(2)*coef(3:2:M,:,:);
% sine, second column
coef2(3:2:M,2:2:N,:) = -1/sqrt(2)*i*coef(M+3:2:2*M,:,:);
coef2(2*M-1:-2:M+2,2:2:N,:) = 1/sqrt(2)*i*coef(M+3:2:2*M,:,:);
end;
% sine, first column.
coef2(2:2:M,1:2:N,:) = -1/sqrt(2)*i*coef(2:2:M,:,:);
coef2(2*M:-2:M+2,1:2:N,:) = 1/sqrt(2)*i*coef(2:2:M,:,:);
% cosine, second column
coef2(2:2:M,2:2:N,:) = 1/sqrt(2)*coef(M+2:2:2*M,:,:);
coef2(2*M:-2:M+2,2:2:N,:) = 1/sqrt(2)*coef(M+2:2:2*M,:,:);
f = comp_isepdgt(coef2,g,L,a,2*M,0);
% Apply the final DGT
%f=comp_idgt(coef2,g,a,[0 1],0,0);
% Clean signal if it is known to be real
if (isreal(coef) && isreal(g))
f=real(f);
end;