[go: up one dir, main page]

Menu

[r28]: / PyNev / neural_utility.py  Maximize  Restore  History

Download this file

309 lines (253 with data), 10.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""Some useful functions for data analysis. Requires pylab (matplotlib)
and scipy and some other more common python modules."""
import pylab
import scipy.signal as ss #For filtering
import datetime #for dates for the impedance file
import nev
import nsx
#filfilt implementation from http://www.scipy.org/Cookbook/FiltFilt
def lfilter_zi(b,a):
#compute the zi state from the filter parameters. see [Gust96].
#Based on:
# [Gust96] Fredrik Gustafsson, Determining the initial states in forward-backward
# filtering, IEEE Transactions on Signal Processing, pp. 988--992, April 1996,
# Volume 44, Issue 4
n=max(len(a),len(b))
zin = ( pylab.eye(n-1) - pylab.hstack( (-a[1:n,pylab.newaxis],
pylab.vstack((pylab.eye(n-2), pylab.zeros(n-2))))))
zid= b[1:n] - a[1:n]*b[0]
zi_matrix=pylab.linalg.inv(zin)*(pylab.matrix(zid).transpose())
zi_return=[]
#convert the result into a regular array (not a matrix)
for i in range(len(zi_matrix)):
zi_return.append(float(zi_matrix[i][0]))
return pylab.array(zi_return)
def filtfilt(b,a,x):
#For now only accepting 1d arrays
ntaps=max(len(a),len(b))
edge=ntaps*3
if x.ndim != 1:
raise ValueError, "Filiflit is only accepting 1 dimension arrays."
#x must be bigger than edge
if x.size < edge:
raise ValueError, "Input vector needs to be bigger than 3 * max(len(a),len(b)."
if len(a) < ntaps:
a=pylab.r_[a,zeros(len(b)-len(a))]
if len(b) < ntaps:
b=pylab.r_[b,zeros(len(a)-len(b))]
zi=lfilter_zi(b,a)
#Grow the signal to have edges for stabilizing
#the filter with inverted replicas of the signal
s=pylab.r_[2*x[0]-x[edge:1:-1],x,2*x[-1]-x[-1:-edge:-1]]
#in the case of one go we only need one of the extrems
# both are needed for filtfilt
(y,zf)=ss.lfilter(b,a,s,-1,zi*s[0])
(y,zf)=ss.lfilter(b,a,pylab.flipud(y),-1,zi*y[-1])
return pylab.flipud(y[edge-1:-edge+1])
#Band choices from http://www.scholarpedia.org/article/Spike_sorting#Step_i.29_Filtering
def filter_waveforms(waveform,
Fstop_lo = 800, Fpass_lo = 1000,
Fpass_hi = 3000, Fstop_hi = 3500, Fs = 30000.):
"""
waveform - m x n array. m waveforms each of n samples
Fstop - stop band for high pass filter
Fpass - pass band for high pass filter
Fs - sampling frequency of spike waveform."""
ws = [2*Fstop_lo/Fs, 2*Fstop_hi/Fs]#2* because ws is in terms of nyquist freq which is .5*Fs
wp = [2*Fpass_lo/Fs, 2*Fpass_hi/Fs]
b,a = ss.iirdesign(wp, ws, gpass=1, gstop=10)
for n in range(waveform.shape[0]):
waveform[n,:] = filtfilt(b,a,waveform[n,:])#ss.lfilter(b,a, waveform[n,:])
return waveform
def discard_artifacts(waveform, threshold_mv):
idx = pylab.find(waveform.max(axis=1) < threshold_mv)
waveform = waveform[idx,:]
return waveform
def align_spike_peaks(waveform, threshold_mv):
"""Align each spike by its peak and scrunch down length apropriately"""
#waveform -= pylab.matrix(waveform[:,:10].mean(axis=1)).T*pylab.matrix(pylab.ones((1,waveform.shape[1])))
idx = pylab.find(waveform.max(axis=1) < threshold_mv)
waveform = waveform[idx,:]
peak_idx = waveform.argmin(axis=1)#a row vector of the peak indices for each spike
idx = pylab.find((peak_idx > 5) & (peak_idx < 15))
wv = pylab.zeros((idx.size,30))
for n in range(idx.size):
wv[n,:] = waveform[idx[n],peak_idx[idx[n]]-6:peak_idx[idx[n]]+24]
return wv
def inspect_lfp(nsx_fname, channel = 1):
"""Plot the whole lfp for the given file."""
f_nsx = open(nsx_fname)
nsx_basic_header = nsx.read_basic_header(f_nsx)
this_lfp = nsx.read_channel(f_nsx, nsx_basic_header,
channel,
tstart_ms = 0,
tdur_ms = -1)
Fs = float(nsx_basic_header['Fs Hz'])
t_ms = 1000*pylab.arange(this_lfp.size)/Fs
pylab.plot(t_ms, this_lfp)
def get_spikes(cerebus_times_ms = None,
t1_ms = -50,
t2_ms = 150,
fun_args = None):
"""A reading function that reads in data from the cerebus spike files.
Inputs:
cerebus_times_ms : an array of cerebus times indicating the start of the
stimuli
t1_ms : start time relative to cerebus_times_ms
t2_ms : end time relative to cerebus_times_ms
fun_args : dictionary:
'nev_basic_header',
'nev_extended_header',
'frag_dir', - directory where fragmented nev file is (absolute)
'channel', - the channel we worry about
'unit' the unit
Outputs:
neural_response : a 7D list with ultimate cells containing a list, array
or any other data structure
comment : a string that should explain what the data is
"""
nev_basic_header = fun_args['nev basic header']
nev_extended_header = fun_args['nev extended header']
frag_dir = fun_args['frag dir']
channel = fun_args['channel']
unit = fun_args['unit']
# Read in the whole spike train - warning, if you read in the spike
# waveforms as well, you may run outta memory
data, dummy = nev.read_frag_unit(
frag_dir, nev_basic_header, nev_extended_header,
channel = channel,
unit = unit,
tstart_ms = 0.0,
tdur_ms = -1,
load_waveform = False,
buffer_increment_size = 1000)
all_spike_time_ms = data['spike time ms']
spike_counts = pylab.zeros((cerebus_times_ms.size),dtype=float)
#mean_latency_ms = pylab.ones((cerebus_times_ms.size),dtype=float) * 1000
spike_time_ms = [None] * cerebus_times_ms.size
for n in range(cerebus_times_ms.size):
tstart_ms = cerebus_times_ms[n] + t1_ms #all times in ms
tstop_ms = cerebus_times_ms[n] + t2_ms
idx = pylab.find((all_spike_time_ms >= tstart_ms) & (all_spike_time_ms <= tstop_ms))
spike_counts[n] = idx.size
if idx.size > 0:
rel_spike_time_ms = all_spike_time_ms[idx] - cerebus_times_ms[n]
#mean_latency_ms[n] = rel_spike_time_ms.mean()
spike_time_ms[n] = rel_spike_time_ms
data = {'trials': cerebus_times_ms.size,
'spike counts': spike_counts,
#'mean latency ms': mean_latency_ms,
'spike times ms': spike_time_ms}
return data
def spike_psth(data, t1_ms = -250., t2_ms = 0., bin_ms = 10):
"""Uses data format returned by get_spikes"""
spike_time_ms = data['spike times ms']
N_trials = data['trials']
t2_ms = pylab.ceil((t2_ms - t1_ms) / bin_ms)*bin_ms + t1_ms
N_bins = (t2_ms - t1_ms) / bin_ms
if N_trials > 0:
all_spikes_ms = pylab.array([],dtype=float)
for trial in range(len(spike_time_ms)):
if spike_time_ms[trial] == None:
continue
idx = pylab.find((spike_time_ms[trial] >= t1_ms) &
(spike_time_ms[trial] <= t2_ms))
all_spikes_ms = \
pylab.concatenate((all_spikes_ms, spike_time_ms[trial][idx]))
spike_n_bin, bin_edges = \
pylab.histogram(all_spikes_ms, bins = N_bins,
range = (t1_ms, t2_ms), new = True)
spikes_per_trial_in_bin = spike_n_bin/float(N_trials)
spike_rate = 1000*spikes_per_trial_in_bin/bin_ms
else:
spike_rate = pylab.nan
bin_center_ms = (bin_edges[1:] + bin_edges[:-1])/2.0
return spike_rate, bin_center_ms
def get_lfp(cerebus_times_ms = None,
t1_ms = -50,
t2_ms = 150,
fun_args = None):
"""A reading function that reads in data from the cerebus ns3 files to grab the
lfp.
Inputs:
cerebus_times_ms : an array of cerebus times indicating the start of the
stimuli
t1_ms : start time relative to cerebus_times_ms
t2_ms : end time relative to cerebus_times_ms
fun_args : dict:
'basic nsx header',
'fnsx', - nsx file handle
'channel', - channel we are interested in
'pos threshold', -
'neg threshold' - discard traces with values outside this range
(if not give, defaults to +/1 400 uV)
Outputs:
neural_response : a 7D list with ultimate cells containing a list, array
or any other data structure
comment : a string that should explain what the data is
"""
basic_header = fun_args['basic nsx header']
f_nsx = fun_args['fnsx']
channel = fun_args['channel']
p_thresh = fun_args.get('pos threshold', +400)
n_thresh = fun_args.get('neg threshold', -400)
trace_count = 0
tdur_ms = t2_ms - t1_ms
N_lfp = nsx.length_of_lfp(basic_header, tdur_ms)
mean_lfp = pylab.zeros(N_lfp, dtype=float)
for n in range(cerebus_times_ms.size):
tstart_ms = cerebus_times_ms[n] + t1_ms #all times in ms
this_lfp = nsx.read_channel(f_nsx, basic_header,
channel,
tstart_ms = tstart_ms,
tdur_ms = tdur_ms)
if (this_lfp.max() < p_thresh) and (this_lfp.min() > n_thresh):
#if threshold == None or pylab.absolute(this_lfp.max()) < threshold:
mean_lfp += this_lfp
trace_count += 1
mean_lfp /= float(trace_count)#cerebus_times_ms.size
data = {'total trials':cerebus_times_ms.size,
'trials': trace_count, #The number of valid trials
'mean lfp': mean_lfp,
'Fs Hz': float(basic_header['Fs Hz'])}
return data
def impedance(fname = '20090430impedance.txt', electrode_count = 96):
"""
This method can read the impedance file saved by the cerebus impedance checker
in text format. It expects the file to be in the format
* AutoImpedance measurements
* 8\10\2010 15:28:58
*
* m = 5.40
* expected = 4460.00
* b = 34.00
*
* Chan RMS/Impedance
******* **************
elec78 424 kOhm
elec88 170 kOhm
Given a filename and a list of electrodes to read, this method will return
a dictionary with the following key value pairs:
'date': date time object
'impedances': list of floats of values in kOhm electrode numbering starts
from 0
"""
file = open(fname)
lines = file.readlines()
#Second line is the date and time in this format
month = int(lines[1][2:4])
day = int(lines[1][5:7])
year = int(lines[1][8:13])
hour = int(lines[1][17:19])
minute = int(lines[1][20:22])
second = int(lines[1][23:25])
impedances = [0]*electrode_count
#From the 10th line on each line is a cluster of three strings
for n in range(9, len(lines)):
values = lines[n].split()
this_trode = int(values[0][4:])
if this_trode <= electrode_count:
impedances[this_trode-1] = int(values[1])
data = {'date': datetime.datetime(year, month, day, hour, minute, second),
'impedances': impedances}
return data