"""A module that collects routines to process eye position."""
import pylab
# Some diagnostic functions
def eye_sample_insert_interval(R):
tt = R.data['Trials']['eyeXData']['Trial Time']
n_trials = len(tt)
d_esii = pylab.array([],dtype=float)
for tr in range(n_trials):
d_esii = pylab.concatenate((d_esii,pylab.diff(tt[tr])))
return d_esii
def eye_sample_count_per_packet(R):
dv = R.data['Trials']['eyeXData']['Data Values']
n_trials = len(dv)
p_cnt = []
for tr in range(n_trials):
n_packets = len(dv[tr])
for pak in range(n_packets):
p_cnt.append(len(dv[tr][pak]))
return pylab.array(p_cnt,dtype=float)
def eye_calibrations(R):
"""Return us the eye calibration transform for each trial.
Input:
R - lablib data file from lablib.py
Output:
M - tr x 2 x 2 array
m11, m12
m21, m22
C - tr x 2 array
tx, ty
"""
cal = R.data['Trials']['eyeCalibrationData']['cal']
tX = cal['tX']
tY = cal['tY']
m21 = cal['m21']
m22 = cal['m22']
m11 = cal['m11']
m12 = cal['m12']
n_trials = len(tX)
M = pylab.zeros((n_trials,2,2), dtype=float)
C = pylab.zeros((n_trials,2), dtype=float)
for tr in range(n_trials):
M[tr,0,0] = m11[tr][0][0]
M[tr,0,1] = m12[tr][0][0]
M[tr,1,0] = m21[tr][0][0]
M[tr,1,1] = m22[tr][0][0]
C[tr,0] = tX[tr][0][0]
C[tr,1] = tY[tr][0][0]
return M,C
def fix_window(R):
"""Return the fixation window for each trial."""
fx_x = R.data['Trials']['fixWindowData']['windowDeg']['origin']['x']
fx_y = R.data['Trials']['fixWindowData']['windowDeg']['origin']['y']
fx_w = R.data['Trials']['fixWindowData']['windowDeg']['size']['width']
fx_h = R.data['Trials']['fixWindowData']['windowDeg']['size']['height']
n_trials = len(fx_x)
fix_w = pylab.zeros((n_trials,5,2),dtype=float)
for tr in range(n_trials):
x = fx_x[tr][0][0]
y = fx_y[tr][0][0]
w = fx_w[tr][0][0]
h = fx_h[tr][0][0]
fix_w[tr,:,0] = pylab.array([x, x+w, x+w, x, x])
fix_w[tr,:,1] = pylab.array([y, y, y+h, y+h, y])
return fix_w
def raw_eye_xy(R, old_format = None):
"""Return the raw x,y data points without calibration for diagnostic purposes."""
if dat_format == None:
dvx = R.data['Trials']['eyeXData']['Data Values']
dvy = R.data['Trials']['eyeYData']['Data Values']
elif dat_format == 'fixate':
#Annoying old format
dvxy = R.data['Trials']['eyeData']['Data Values']
n_trials = len(dvxy)
dvx = []
dvy = []
for tr in range(n_trials):
dvx_tr = []
dvy_tr = []
for pak in range(len(dvxy[tr])):
dvx_tr.append(dvxy[tr][pak][::2])
dvy_tr.append(dvxy[tr][pak][1::2])
dvx.append(dvx_tr)
dvy.append(dvy_tr)
n_trials = len(dvx)
all_x = []
all_y = []
for tr in range(n_trials):
raw_x = []
raw_y = []
for pak in range(len(dvx[tr])):
raw_x += dvx[tr][pak]
for pak in range(len(dvy[tr])):
raw_y += dvy[tr][pak]
if len(dvx[tr]) != len(dvy[tr]):
print 'eye.eye_xy: trial %d : unequal number of packets x=%d y=%d' %(tr, len(dvx[tr]), len(dvy[tr]))
uncal_x = pylab.array(raw_x, dtype=float)
uncal_y = pylab.array(raw_y, dtype=float)
if uncal_x.size != uncal_y.size:
print 'eye.eye_xy: trial %d : unequal number of samples x=%d y=%d' %(tr, uncal_x.size, uncal_y.size)
minnsamp = min(uncal_x.size, uncal_y.size)
uncal_x = uncal_x[:minnsamp]
uncal_y = uncal_y[:minnsamp]
all_x.append(pylab.array(uncal_x, dtype=float))
all_y.append(pylab.array(uncal_y, dtype=float))
return all_x, all_y
def eye_xy(R, M, C, old_format = False):
"""Give us eye position data for each trial.
Inputs:
R - lablib data structure from reader
M - m matrix
C - c matrix
old_format - if False then we load the usual MstimPair dat files where the
eye xy is stored in eyeXData and eyeYData
if True then we look for it in eyeData
Outputs:
all_x - list of arrays of the eyeposition for each trial
all_y - list of arrays of the eyeposition for each trial
"""
if old_format == False:
dvx = R.data['Trials']['eyeXData']['Data Values']
dvy = R.data['Trials']['eyeYData']['Data Values']
else:
#Annoying old format
dvxy = R.data['Trials']['eyeData']['Data Values']
n_trials = len(dvxy)
dvx = []
dvy = []
for tr in range(n_trials):
dvx_tr = []
dvy_tr = []
for pak in range(len(dvxy[tr])):
dvx_tr.append(dvxy[tr][pak][::2])
dvy_tr.append(dvxy[tr][pak][1::2])
dvx.append(dvx_tr)
dvy.append(dvy_tr)
n_trials = len(dvx)
all_x = []
all_y = []
for tr in range(n_trials):
raw_x = []
raw_y = []
for pak in range(len(dvx[tr])):
raw_x += dvx[tr][pak]
for pak in range(len(dvy[tr])):
raw_y += dvy[tr][pak]
if len(dvx[tr]) != len(dvy[tr]):
print 'eye.eye_xy: trial %d : unequal number of packets x=%d y=%d' %(tr, len(dvx[tr]), len(dvy[tr]))
uncal_x = pylab.array(raw_x, dtype=float)
uncal_y = pylab.array(raw_y, dtype=float)
if uncal_x.size != uncal_y.size:
print 'eye.eye_xy: trial %d : unequal number of samples x=%d y=%d' %(tr, uncal_x.size, uncal_y.size)
minnsamp = min(uncal_x.size, uncal_y.size)
uncal_x = uncal_x[:minnsamp]
uncal_y = uncal_y[:minnsamp]
#The formula that JOhn uses for the calibration is (counter to matrix notation)
# x = m_11 x + m_21 y + tx
# y = m_12 x + m_22 y + ty
# Note the back-diagonal terms are flipped!
#x = M[tr,0,0]*uncal_x + M[tr,0,1]*uncal_y + C[tr,0]#WRONG CODE!
#y = M[tr,1,0]*uncal_x + M[tr,1,1]*uncal_y + C[tr,1]
x = M[tr,0,0]*uncal_x + M[tr,1,0]*uncal_y + C[tr,0]
y = M[tr,0,1]*uncal_x + M[tr,1,1]*uncal_y + C[tr,1]
all_x.append(pylab.array(x, dtype=float))
all_y.append(pylab.array(y, dtype=float))
return all_x, all_y
def eye_xy_selected(all_x, all_y, trial_no, start_ms, stop_ms, f_samp = 200.0):
"""For the given trial give us the eye samples between the start_ms and stop_ms
which are equal sized arrays.
start_ms, stop_ms - trial times (from lablib)
Returns-
x, y - list of arrays for the eye pos
mx, my - array of mean eye pos"""
x = [None] * start_ms.size
y = [None] * start_ms.size
mx = pylab.zeros(start_ms.size,dtype=float)
my = pylab.zeros(start_ms.size,dtype=float)
for n in range(start_ms.size):
start_idx = int(f_samp * start_ms[n]/1000.0)
stop_idx = int(f_samp * stop_ms[n]/1000.0)
x[n] = all_x[trial_no][start_idx:stop_idx]
mx[n] = x[n].mean()
y[n] = all_y[trial_no][start_idx:stop_idx]
my[n] = y[n].mean()
return x, y, mx, my
def fixation_box_dwell_times(R):
"""Return us the fixation box dwell start and end times. We assume that
'fixate' indicates the entry of the eye into the fixation box, and that
'saccade' indicates the exit of the eye from the box. If 'fixate'
is empty, no fixation occured (-1 is filled) if 'saccade' is empty, the
fixation was not broken until the trial stopped (-1 is filled)."""
# if R.data['Trials'].has_key('fixate'):
f_on = R.data['Trials']['fixate']['Trial Time']
if R.data['Trials'].has_key('saccade'):
f_off = R.data['Trials']['saccade']['Trial Time']
else:
f_off = [[] for n in range(len(f_on))]
# else:
# f_on = R.data['Trials']['fixOn']['Trial Time']
# f_off = R.data['Trials']['fixOff']['Trial Time']
n_trials = len(f_on)
dwell_times = pylab.zeros((n_trials,2)) # Start and stop
for tr in range(n_trials):
st = f_on[tr]
if len(st) == 1:
st = st[0]
else:
st = -1
nd =f_off[tr]
if len(nd) == 1:
nd = nd[0]
else:
nd = -1
dwell_times[tr,:] = [st, nd]
return dwell_times
def fixation_box_samples(all_x, all_y, fix_w, dwell_times, f_samp = 200.0):
"""Collect all x and ys for all trials for when the eye is within the fixation
box."""
n_trials = len(all_x)
in_fix_box_x = pylab.array([],dtype=float)
in_fix_box_y = pylab.array([],dtype=float)
for tr in range(n_trials):
if dwell_times[tr,0] >= 0:
# We got a fixation
start_idx = int(f_samp * dwell_times[tr,0]/1000.0)
end_idx = -1
if dwell_times[tr,1] >= 0:
end_idx = int(f_samp * dwell_times[tr,1]/1000.0) - 5
in_fix_box_x = pylab.concatenate((in_fix_box_x, all_x[tr][start_idx:end_idx]))
in_fix_box_y = pylab.concatenate((in_fix_box_y, all_y[tr][start_idx:end_idx]))
return in_fix_box_x, in_fix_box_y
def plot_eye_pos(trial_no, all_x, all_y, fix_w, dwell_times, f_samp = 200.0):
"""."""
n = trial_no
pylab.plot(all_x[n], all_y[n], c='gray')
pylab.plot(fix_w[n,:,0], fix_w[n,:,1],'k:')
if dwell_times[n,0] >= 0:
# We got a fixation
start_idx = int(f_samp * dwell_times[n,0]/1000.0)
end_idx = -1
if dwell_times[n,1] >= 0:
end_idx = int(f_samp * dwell_times[n,1]/1000.0) - 5
pylab.plot(all_x[n][start_idx:end_idx], all_y[n][start_idx:end_idx], 'k')
pylab.axis('scaled')