[go: up one dir, main page]

Menu

[r320]: / htdocs / gr_scat.html  Maximize  Restore  History

Download this file

58 lines (55 with data), 2.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
<body vlink="black" link="blue">
<table>
<tr bgcolor="gray">
<td>
<font color="FFFFFF">
<a href="index.html">
<img src="msci_logo.png" width=100 border="0">
</a>
<a href="projects.html" style="color:rgb(255,255,255)">Projects</a>
<a href="http://sourceforge.net/projects/msci/" style="color:rgb(255,255,255)">Sourceforge</a>
<a href="http://sourceforge.net/projects/msci/files/" style="color:rgb(255,255,255)">Download</a>
<a href="https://sourceforge.net/donate/index.php?group_id=382565" style="color:rgb(255,255,255)">Donate</a>
</font>
</td></tr>
<tr><td>
<table>
<tr>
<td valign="top" align="left">
<ul>
<li><a href="gr_scat.html">gr_scat</a></li>
<li><a href="ice_model.html">ice_model</a></li>
<li><a href="idl_lib.html">idl_lib</a></li>
<li><a href="fish_shark.html">fish_shark</a></li>
</ul>
<center>
<i>mAD <br>sciENTIST</i><br> is a <br>
<a href="http://peteysoft.org"><b>Peteysoft</b></a> project</center>
</td>
<td>
<img src="gr_system.png" width=600>
<br>
<br>
<h2>Gaspard-Rice scattering simulation</h2>
The Gaspard-Rice system is a two-dimensional, classical chaotic scattering system composed
of three hard discs arranged in a triangular formation
(Gaspard and Rice 1989, Yalcinkya and Lai 1995).
The simulation uses simple geometry to calculate the trajectory
of a point particle injected into a collection of any number of
hard discs having any size.
It was used for the research conducted in Mills (2006)
and will be useful to other researchers studying chaotic scattering.
Since Mills (2006) deals with the effects of noise on the system,
the codes allow for the addition of either Gaussian or white noise.
<h2>References</h2>
<ul>
<li>Pierre Gaspard and Stuart A. Rice (1989). "Scattering from a classically chaotic repellor." <i>Journal of Chemical Physics</i> <b>90</b> (4): 2225-2241.</li>
<li>Tolga Yalcinkaya and Ying-Cheng Lai (1995). "Chaotic scattering." <i>Computers in Physics</i> <b>9</b> (5): 511-518.</li>
<li>Peter Mills (2006). "The influence of noise on a classical chaotic scatterer." <i>Communications in Nonlinear Science and Numerical Simulation</i> <b>11</b> (8): 899-906.</li>
</ul>
</td>
</tr>
</table>
</td></tr>
</table>
</body>