[go: up one dir, main page]

Menu

[r303]: / libpetey / erfcinv.cc  Maximize  Restore  History

Download this file

188 lines (141 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_erf.h>
#include "peteys_tmpl_lib.h"
#include "supernewton.h"
#define ERFINV_XTOL 0.
#define ERFINV_YTOL 1e-15
#define ERFCINV_XTOL 0.
#define ERFCINV_YTOL 1e-50
#define ERFCINV_MAXITER 1000
//the inverse error function is normally not included with standard math
//libraries (it is absent from the GSL)
//this is my attempt to produce such a function
//while the current attempts do not work satisfactorily, they have
//revealed to me some limitations in the "supernewton" algorithm that
//need to be addressed
//a bit more polishing and it would probably work quite well...
void erfc_plus_deriv(double x, void *param, double *y, double *dydx) {
double f;
double y0;
double dfdx;
*y=gsl_sf_erfc(x)-*(double *) param;
*dydx=-M_2_SQRTPI*exp(-x*x);
}
void erf_plus_deriv(double x, void *param, double *y, double *dydx) {
*y=gsl_sf_erf(x)-*(double *) param;
*dydx=M_2_SQRTPI*exp(-x*x);
}
double erfcinv2(double x) {
double absx;
double y;
double y1, y2;
long err;
double sgnx;
double xc;
void *param;
gsl_error_handler_t *old_handler;
if (x==0.) return 0.;
absx=fabs(x);
sgnx=x/absx;
old_handler=gsl_set_error_handler_off();
if (absx < gsl_sf_erfc(25)) {
return sgnx*INFINITY;
} else if (absx < gsl_sf_erfc(2.5)) {
param=&x;
y1=sgnx*2.5;
y2=sgnx*25;
y=supernewton(&erfc_plus_deriv, param, y1, y2, ERFCINV_XTOL, ERFCINV_YTOL, ERFCINV_MAXITER, err);
} else {
xc=1-x;
param=&xc;
y1=0;
y2=sgnx*2.5;
y=supernewton(&erf_plus_deriv, param, y1, y2, ERFINV_XTOL, ERFINV_YTOL, ERFCINV_MAXITER, err);
}
gsl_set_error_handler(old_handler);
printf("erfinv iterations=%ld\n", err);
return y;
}
#define ERFCINV_NTABLE 20
double erfcinv_ytable[ERFCINV_NTABLE]={0.1000000000000000055511151, 0.1339997106006672877853703, 0.179559224410625883905368, 0.2406088410670414179381993, 0.3224151507094550339616035, 0.4320353688833750149811408, 0.5789261439962479771637049, 0.7757593575465746571495629, 1.03951529407000609062095, 1.392947485703483589958296, 1.866545599661939336399996, 2.50116570177648966932793, 3.351554802023644086261811, 4.491073735334452088352464, 6.018025808210742511050739, 8.064137166875866569171194, 10.80592046605450917695634, 14.47990215225132537568697, 19.40302697927656438992017, 26};
double erfcinv_xtable[ERFCINV_NTABLE]={ 0.8875370839817151580319887, 0.8496976572790083670483341, 0.7995457048771270613940487, 0.7336514856277412954810302, 0.6484159530328690301814731, 0.541206016476690532357452, 0.412943213103930006901976, 0.2726023114674728797801606, 0.141535585714363754128442, 0.04884694086378559702010804, 0.008298088947439162185726325, 0.0004044201743987975482610975, 2.139142245461042382694916e-06, 2.134509774098865909524717e-10, 1.727765284054945417466263e-17, 3.97453051075275160673825e-30, 1.009859790297311418956122e-52, 3.405357962804753120513636e-93, 9.139006961558066437665542e-166, 5.663192408856141018983002e-296};
double erfcinv(double x) {
double absx;
double y;
double y1, y2;
long err;
long ind;
double sgnx;
double ytol;
gsl_error_handler_t *old_handler;
if (x==0.) return 0.;
absx=fabs(x);
sgnx=x/absx;
void *param=&x;
ind=bin_search(erfcinv_xtable, ERFCINV_NTABLE, absx);
if (ind < 0) {
y1=-erfcinv_ytable[0];
y2=erfcinv_ytable[0];
ytol=0;
} else if (ind==ERFCINV_NTABLE) {
return sgnx*INFINITY;
} else {
y1=erfcinv_ytable[ind]*sgnx;
y2=erfcinv_ytable[ind+1]*sgnx;
ytol=0;
}
//y1=-100.;
//y2=100.;
old_handler=gsl_set_error_handler_off();
y=supernewton(&erfc_plus_deriv, param, y1, y2, ERFCINV_XTOL, ytol, ERFCINV_MAXITER, err);
gsl_set_error_handler(old_handler);
printf("erfinv iterations=%ld\n", err);
if (err < 0) {
return sgnx*INFINITY;
}
return y;
}
#define ERFINV_NTABLE 8
double erfinv_ytable[ERFINV_NTABLE+1]={0.1000000000000000055511151, 2.704865449790269771312978, 4.159675982375273584068509, 4.972183855244742822776516, 5.425967374602302939479159, 5.679404281882109550849691, 5.820948130945836851424247, 5.900000000000000355271368};
double erfinv_xtable[ERFINV_NTABLE]={0.1124629160182848974791625, 0.9998693644789686807428097, 0.9999999959630012646982777, 0.9999999999979600762145537, 0.9999999999999832356323282, 0.9999999999999990007992778, 0.9999999999999997779553951, 0.9999999999999998889776975};
double erfinv_tol[ERFINV_NTABLE]={1e-12, 1e-12, 1e-12, 1e-13, 1e-15, 1e-18,
1e-20, 1e-22};
double erfinv(double x) {
double absx;
double y;
double y1, y2;
long err;
long ind;
double sgnx;
double ytol;
gsl_error_handler_t *old_handler;
if (x==0.) return 0.;
absx=fabs(x);
sgnx=x/absx;
void *param=&x;
ind=bin_search(erfinv_xtable, ERFINV_NTABLE, absx);
if (ind < 0) {
y1=-erfinv_ytable[0];
y2=erfinv_ytable[0];
ytol=erfinv_tol[ind];
} else if (ind==ERFINV_NTABLE) {
return sgnx*INFINITY;
} else {
y1=erfinv_ytable[ind]*sgnx;
y2=erfinv_ytable[ind+1]*sgnx;
ytol=1e-12;
}
//y1=-100.;
//y2=100.;
old_handler=gsl_set_error_handler_off();
y=supernewton(&erf_plus_deriv, param, y1, y2, ERFINV_XTOL, ytol, ERFCINV_MAXITER, err);
gsl_set_error_handler(old_handler);
printf("erfinv iterations=%ld\n", err);
if (err < 0) {
return sgnx*INFINITY;
}
return y;
}