[go: up one dir, main page]

Menu

Tree [0660c0] 0.1.3 /
 History

HTTPS access


File Date Author Commit
 python 2013-10-16 Gert Wollny Gert Wollny [84b3d5] change all print calls to use brackets
 src 2013-04-22 Gert Wollny Gert Wollny [26ef3b] Correct function call to filter
 .gitignore 2013-10-16 Gert Wollny Gert Wollny [d7a954] update ignore files
 AUTHORS 2012-03-26 Gert Wollny Gert Wollny [8c54f1] initial checkin
 CMakeLists.txt 2012-11-15 Gert Wollny Gert Wollny [1c8948] move value declaration out of template for comp...
 COPYING 2012-05-18 Gert Wollny Gert Wollny [9d3970] add copyright info
 ChangeLog 2013-10-16 Gert Wollny Gert Wollny [e5a260] add bug id to changelog entry
 MANIFEST.in 2013-10-23 Gert Wollny Gert Wollny [0660c0] correctly add header files to source distribution
 README 2013-10-16 Gert Wollny Gert Wollny [4fbd97] add dependencies and description
 setup.py 2013-10-23 Gert Wollny Gert Wollny [0660c0] correctly add header files to source distribution

Read Me

This is the python interface for the MIA library. It uses numpy to 
represent images, and currently, filters and image registration is 
supported. 

  Compiling the interface:

The build system utilizes python distutils. To compile the interface 
the compiler must support the -std=c++11 compiler flag. 
Building the interface then build down to running 

  python setup.py build 

Note, that you wil need mia >= 2.0.10 to be installed. 


  Using the python interface: 

Given that MyImage is a 2D or 3D numpy array of scalar values, one may 
run a filter chain like 
 
  import mia

  MyFilteredImage = mia.filter(MyImage, ["filter1:param1=a", 
                                     "filter2:param1=b,param2=c", ...])

For the availabe filters see the user reference of MIA.


Similarly, the image registration can be run with images Moving and Reference, 
using a spline based transformation with a coefficient rate of 5 pixels, 2 
multi-resolution levels and an nlopt based optimizer: 

  import mia
  Registered = mia.register_images(src=Moving, ref=Reference, 
     transform="spline:rate=5", cost=["image:cost=ssd", "divcurl:weight=10.0"],
     mglevels=2, optimizer="nlopt:opt=ld-var1,xtola=0.001,ftolr=0.001,maxiter=300")


The result image is stored in Registered. Currently, the transformation is lost.

A simple segmentation program for the segmentation of myocardial perfusion images 
is available as mia-myocard-segtool. It requires Python-WxWidgets to be installed. 

The image series is expected to be given as a XML file that can be created by using 
mia-2dseries2sets.