[go: up one dir, main page]

Menu

[r999]: / libmona / doc / pluginlist.tex  Maximize  Restore  History

Download this file

751 lines (583 with data), 22.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
% in this chapter all plugins are described
%
\chapter{List of Filters and Plugins}
\newcommand\plugtabstart{\begin{tabular}{|p{0.1\columnwidth}|p{0.1\columnwidth}|p{0.5\columnwidth}|p{0.1\columnwidth}|}\hline}
This chapter lists all the plugins available in mona2d.
The descriptions follow the following pattern:
\begin{description}
\item [Plugin:]\emph{the name by which the plugin is selected on the command
line}
\item [Description:]A description of the filter
\item [Parameters:] a list of the plugin parameters
\plugtabstart
parameter name& parameter type& description of the parameter & default value\\\hline
\end{tabular}
\end{description}
\section{2D image filters}
\label{sec:plugins}
In this section the following notation is used: $g$ indicates the source image,
$\hat{f}$ is the output image, and $S_{xy}$ is the set of pixels that is covered by the filter mask.
For an in-depth discussion of most of the filters presented here, see, e.g., \citet{gonzales02:dip}.
\subsection*{adaptive median filtering}
\begin{description}
\item [Plugin:]\emph{adaptmed}
\item [Description:]The filter works is a smoothing filter that has the
advantage that is does not introduce new pixel values into the image
intensity range, see \emph{median filter} for details. The filter
width is set to 3 at the beginning is enlarged until the filtered
pixel value no longer is at the boundaries of the filter width intensity
range, or the maximum filter width is hit.
\item [Parameters:] w
\plugtabstart
w& integer& half maximum filter width (maximum width = 2w+1) & 0\\
\hline
\end{tabular}
\end{description}
\subsection*{adaptive mean filtering}
\begin{description}
\item [Plugin:]\emph{admean}
\item [Description:] Filter depending on local variation.
\item [Parameters:] w
\plugtabstart
w& integer& half maximum filter width (maximum width = 2w+1) & 0\\
\hline
\end{tabular}
\end{description}
\subsection*{Anisotropic diffusion}
\begin{description}
\item [Plugin:]\emph{aniso}
\item [Description:]Anisotropic diffusion is an iterative edge preserving
filter. Various edge stopping functions are supported (cf e.g. \citet{black98:aniso})
and the noise level can be deduced automatically, or set to a fixed
value.
\item [Parameters:] epsilon, iter, k , n, psi
\plugtabstart
epsilon & float & stopping criterion, iteration is ended, if the sum of all pixel intensity updates falls below that level & 1\\\hline
iter & integer& maximum number of iterations & 100\\\hline
k & float & the noise threshold - a value of 0 indicates automatic detection &0\\\hline
n & integer& neighborhood - 4 and 8 are supported &8\\\hline
psi & string & The edge stopping function tukey, pm1, pm2 & tukey\\\hline
\end{tabular}
\end{description}
\subsection*{Intensity based bandpass filter}
\begin{description}
\item [Plugin:]bandpass
\item [Description:]An intensity band pass filter - all pixels with intensities
outside the given range are set to zero, all other pixels remain the
same ($x:=x\in [min,max]\:?\: x\::\:0$
\item [Parameters:] min, max
\plugtabstart
min& float& lower bound of the bandpass range &0\\\hline
max& float& upper bound of the bandpass range &3.40282e+38\\\hline
\end{tabular}
\end{description}
\subsection*{Binarize}
\begin{description}
\item [Plugin:]\emph{binarize}
\item [Description:]A binarize filter - all pixels with intensities outside
the given range are set to 0, all other pixels are set to $x:=x \in [min,max]\:?\:1\::\:0$
\item [Parameters:] min, max
\plugtabstart
min& float& lower bound of the binarize range &0\\
\hline
max& float& upper bound of the binarize range &3.40282e+38\\
\hline
\end{tabular}
\end{description}
\subsection*{Class probability mapper}
\begin{description}
\item [Plugin:]\emph{classmap}
\item [Description:]Given a fuzzy c-means classification of the image based
on intensities, an probability image is created.
\item [Parameters:] class, map
\plugtabstart
class & integer & the class to be mapped &2 \\\hline
map & string & the probability map & (none) \\\hline
\end{tabular}
\end{description}
\subsection*{Distance Transform}
\label{sec:distance}
\begin{description}
\item [Plugin:]\emph{distance}
\item [Description:] Evaluate an image that represents an euclidian distance from the shape of the input image. The algorithm is based on \cite{felzenszwalb04dist}.
\item [Parameters:] scale
\plugtabstart
scale & float & scaling factor for the fixed poinmt arithmetic storage $\in$ [1, 1024] & 256 \\\hline
\end{tabular}
\end{description}
\subsection*{Integer to Byte Pixel Conversion}
\begin{description}
\item [Plugin:]\emph{conv2b}
\item [Description:] convert an image to unsigned byte pixel representation
\item [Parameters:] min, max
\plugtabstart
min & integer & lower intensity boundary, everything below will get mapped to black=0 &0\\\hline
max & integer & upper intensity boundary, everything above will get mapped to white=255 &2147483647 \\\hline
\end{tabular}
\end{description}
\subsection*{Image cropping}
\begin{description}
\item [Plugin:]\emph{crop}
\item [Description:] crop a certain region from an input image
\item [Parameters:] sx, sy, ex, ey
\plugtabstart
sx & integer & left boundary of the crop region &0\\\hline
sy & integer & upper boundary of the crop region &0 \\\hline
dx & integer & width of the crop region -1 = maximum possible width & -1\\\hline
sy & integer & height of the crop region -1 = maximum possible height &-1\\\hline
\end{tabular}
\end{description}
\subsection*{Image downscaling}
\begin{description}
\item [Plugin:]\emph{downscaler}
\item [Description:] downscale an image, the high frequency portions of the image are removed using a Gaussian filter
\item [Parameters:] dx, dy
\plugtabstart
dx & integer & width of target image &1\\\hline
dy & integer & height of target image &1 \\\hline
\end{tabular}
\end{description}
\subsection*{Extended Kuwahara filter}
\begin{description}
\item [Plugin:]\emph{extkuwa}
\item [Description:] an edge preserving filter, extending the original Kuwahara filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter &1\\\hline
\end{tabular}
\end{description}
\subsection*{Frequency Domain Filtering}
\begin{description}
\item [Plugin:]\emph{fft}
\item [Description:] frequency domain based filtering, the actual filter has to be specified by the
kernel parameter
\item [Parameters:] kernel
\plugtabstart
kernel & string & a description of the filter kernel (see Section \ref{sec:fftkernels}) & (none)\\\hline
\end{tabular}
\end{description}
\subsection*{Spacial Domain to Frequency Spectrum Conversion}
\begin{description}
\item [Plugin:]\emph{frequency}
\item [Description:] A conversion from the spacial domain to the frequency domain
\item [Parameters:] none
\end{description}
\subsection*{Gaussian Blurring}
\begin{description}
\item [Plugin:]\emph{gauss}
\item [Description:] the Gaussian smoothing filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter &1\\\hline
\end{tabular}
\end{description}
\subsection*{Harmonic Mean Filter}
\begin{description}
\item [Plugin:]\emph{harmmean}
\item [Description:] the Harmonic median filter $\hat{f}(x,y) = \frac{(2w+1)^2}{\sum_{(s,t) \in S_{xy}}\frac{1}{g(s,t)}}$
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter &1\\\hline
\end{tabular}
\end{description}
\subsection*{Kuwahara Filter}
\begin{description}
\item [Plugin:]\emph{kuwahara}
\item [Description:] the Kuwahara filter (use the extended Kuwahara filter instead)
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Label Mapping Filter}
\begin{description}
\item [Plugin:]\emph{labelmap}
\item [Description:] a filter to replace intensities (labels) in an image according to a given map
\item [Parameters:] map
\plugtabstart
map & string & the label map description file & (none)\\
\hline
\end{tabular}
\end{description}
\subsection*{Logarithmic Frequency Domain Filtering}
\begin{description}
\item [Plugin:]\emph{lnfft}
\item [Description:] logarithmic frequency domain based filtering, the actual filter has to be specified by the
kernel parameter. Logarithmic means, the natural Logarithmic function is applied
to the intensity values before the FFT, and the exponential function after the
back transformation. As a result, multiplicative frequency components become additive.
\item [Parameters:] kernel
\plugtabstart
kernel & string & a description of the filter kernel (see Section \ref{sec:fftkernels}) & (none)\\
\hline
\end{tabular}
\end{description}
\subsection*{Median Filter}
\begin{description}
\item [Plugin:]\emph{median}
\item [Description:] the median filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\
\hline
\end{tabular}
\end{description}
\subsection*{Midpoint Filter}
\begin{description}
\item [Plugin:]\emph{midpoint}
\item [Description:] the midpoint filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\
\hline
\end{tabular}
\end{description}
\subsection*{Mask Filter}
\begin{description}
\item [Plugin:]\emph{mask}
\item [Description:] Mask an image by a given input mask (binary image): $\hat{f}(x,y) = \text{mask}(x,y) ? g(x,y): 0$.
\item [Parameters:] mask
\plugtabstart
mask & string & the mask image & (none)\\
\hline
\end{tabular}
\end{description}
\subsection*{Morphological Operations}
\begin{description}
\item [Plugin:]\emph{close}, \emph{dilate}, \emph{erode}, \emph{open}
\item [Description:]The specified morphological operation.
Supported structuring elements are described in Section \ref{sec:2dshapes}.
\item [Parameters:] hint, shape
\plugtabstart
hint& integer& gives a hint whether the image will contain more white or more black pixels & black \\\hline
shape& string& the structuring element & {[}circle:r=1{]}\\\hline
\end{tabular}
\end{description}
\subsection*{Noise Simulation}
\begin{description}
\item [Plugin:]\emph{noise}
\item [Description:] Add noise to an image.
\item [Parameters:] g, m
\plugtabstart
g & string & noise generator, see Section \ref{sec:plugnoise} & [gauss:mu=0,sigma=10] \\\hline
m & integer &modulated noise & 0\\\hline
\end{tabular}
\end{description}
\subsection*{Probability based Region Growing}
\begin{description}
\item [Plugin:]\emph{regiongrow}
\item [Description:] Given an input image and a class probability map, connected regions are segmented.
The region growing is seeded by all pixels that have a probability higher then \emph{seed} in the
indicated \emph{class} as described in \emph{map}.
Pixels located in the 4 neighborhood of the growing region are added, if their
class probability is greater then \emph{low}.
\item [Parameters:] class, low, map, seed
\plugtabstart
class & integer & (tissue) class to be segmented & 2 \\\hline
low & float & lower probability threshold for the region growing & 0.5\\\hline
map & string & probability map & (none)\\\hline
seed & float & high probability threshold to seed the region growing & 0.9\\\hline
\end{tabular}
\end{description}
\begin{description}
\item [Plugin:]\emph{rgg}
\item [Description:] Given an input image and a class probability map, connected regions are segmented.
The region growing is seeded by all pixels that have a probability higher then \emph{seed} in the respective classes as described in \emph{map}.
Pixels located in the 4 neighborhood of the growing region are added in th eorder of lowest gradient.
\item [Parameters:] map, seed
\plugtabstart
map & string & probability map & (none)\\\hline
seed & float & high probability threshold to seed the region growing & 0.9\\\hline
\end{tabular}
\end{description}
\subsection*{Salt and Pepper Filter}
\begin{description}
\item [Plugin:]\emph{sandp}
\item [Description:] A salt and pepper noise remove filter that is based on the median filter.
The median filter is only applied to a pixel, if the difference between its original value and
the value resulting from the filter is larger then \emph{thresh}.
\item [Parameters:] w, thresh
\plugtabstart
w & integer & filter width parameter & 1\\\hline
thresh & float & the median application threshold & 10\\\hline
\end{tabular}
\end{description}
\subsection*{Thresh}
\begin{description}
\item [Plugin:]\emph{thresh}
\item [Description:] A filter to remove background noise by setting all pixels with an intensity less then
\emph{thresh} and with all neighboring pixels also below that threshold to zero.
This helps image compression and supports speeding up calculations.
\item [Parameters:] min, n
\plugtabstart
min & float & threshold value & 0\\\hline
n & integer & neighborhood out of $\{ 0, 4, 8 \}$ & 8\\\hline
\end{tabular}
\end{description}
\subsection*{Variation Image}
\begin{description}
\item [Plugin:]\emph{variation}
\item [Description:] Evaluate the variation of an image using a given window width \emph{w}.
\item [Parameters:] float, w, scale
\plugtabstart
float & integer & output the result as float valued image (useful for watershed algorithms),
otherwise use input pixel format & 0\\\hline
w & integer & window width parameter & 1\\\hline
scale &integer & scale variation to use full intensity range & 0\\\hline
\end{tabular}
\end{description}
\subsection*{Watershed algorithm V1}
\begin{description}
\item [Plugin:]\emph{ws}
\item [Description:] a watershed algorithm somewhat inspired by \citet{rodriguez05:water}.
It somehow tries to segment all classes at the same time.
\item [Parameters:] map, p, thresh, tol, w
\plugtabstart
p & float & decision parameter whether fuzzy segmentation or neighborhood should be used & 1.5\\\hline
thresh & float & threshold for seed probability & 0.9\\\hline
tol & float & tolerance for watershed & 0.8\\\hline
w & integer & window width for variation evaluation & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Watershed algorithm V2}
\begin{description}
\item [Plugin:]\emph{watershed}
\item [Description:] another watershed algorithm somewhat inspired by \citet{rodriguez05:water}.
\item [Parameters:] class, map, p, thresh, tol, w
\plugtabstart
class & integer & class to be segmented & 2\\\hline
p & float &decision parameter whether fuzzy segmentation or neighborhood should be used & 1.5\\\hline
thresh & float & threshold for seed probability & 0.9\\\hline
tol & float & tolerance for watershed & 0.8\\\hline
w & integer & window width for variation evaluation & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Weighted Mean Filter}
\begin{description}
\item [Plugin:]\emph{wmean}
\item [Description:] a weighed median filter
\item [Parameters:] hw, weight
\plugtabstart
hw & integer & filter width parameter & 1\\\hline
weight & float & the weight applied to the non-central pixels & 0.7 \\\hline
\end{tabular}
\end{description}
\section{2D Stack filter plugins}
\label{sec:2dstackfilters}
\subsection*{Gauss Filter}
\begin{description}
\item [Plugin:]\emph{gauss}
\item [Description:] the Gauss filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Extended Kuwahara Filter (Mean Least Variation)}
\begin{description}
\item [Plugin:]\emph{extkuwa}
\item [Description:] an edge preserving and enhancing filter, extending the original Kuwahara filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Parallized Extended Kuwahara Filter}
\begin{description}
\item [Plugin:]\emph{pextkuwa}
\item [Description:] an edge preserving filter, extending the original Kuwahara filter, parallized implementation - use only if you have really more
then one processor core to work with (Hyperthreading might improve performance as well).
\item [Parameters:] w
\item [Parameters:] threads
\plugtabstart
w & integer & filter width parameter & 1\\\hline
threads & integer & number of threads to use for working on the data, 0=use as many threads as processors are available on the system & 0 \\\hline
\end{tabular}
\end{description}
\subsection*{Connected Component Labelling}
\begin{description}
\item [Plugin:]\emph{label}
\item [Description:] A labelling filter to label connected components in a binary image.
\item [Parameters:] map
\plugtabstart
map & string & output to a recapping table to be able to relabel merged components (input to 2D filter labelmap) & (none)\\\hline
\end{tabular}
\end{description}
\subsection*{Median Filter}
\begin{description}
\item [Plugin:]\emph{median}
\item [Description:] the median filter
\item [Parameters:] w
\plugtabstart
w & integer & filter width parameter & 1\\\hline
\end{tabular}
\end{description}
\subsection*{Morphological Operations}
\begin{description}
\item [Plugin:] \emph{dilate}, \emph{erode}
\item [Description:]The specified morphological operation.
Supported structuring elements are described in Section \ref{sec:3dshapes}.
\item [Parameters:] hint, shape
\plugtabstart
hint& integer& gives a hint whether the image will contain more white or more black pixels & black \\\hline
shape& string& the structuring element & {[}sphere:r=1{]}\\\hline
\end{tabular}
\end{description}
\subsection*{Probability based Region Growing}
\begin{description}
\item [Plugin:]\emph{regiongrow}
\item [Description:] Given an input image and a class probability map, connected regions are segmented.
The region growing is seeded by all pixels that have a probability higher then \emph{seed} in the
indicated \emph{class} as described in \emph{map}.
Pixels located in the 4 neighborhood of the growing region are added, if their
class probability is greater then \emph{low}.
\item [Parameters:] class, low, map, seed
\plugtabstart
class & integer & (tissue) class to be segmented & 2 \\\hline
depth & integer & number of slices the filter keeps in memory in order to grow a region & 5\\\hline
low & float & lower probability threshold for the region growing & 0.5\\\hline
map & string & probability map & (none)\\\hline
seed & float & high probability threshold to seed the region growing & 0.9\\\hline
\end{tabular}
\end{description}
\section{Frequency Domain 2D Filter Kernels}
\label{sec:fftkernels}
\subsection*{Dummy}
\begin{description}
\item [Plugin:] \emph{dummy}
\item [Description:]a dummy kernel for testing purposes
\item [Parameters:] none
\end{description}
\subsection*{Band filter}
\begin{description}
\item [Plugin:] \emph{bandpass}, \emph{bandreject}
\item [Description:]Band pass and band reject kernels.
\item [Parameters:] f, w, m
\plugtabstart
f& float & band center frequency & 10.0\\\hline
w& float & band width & 10.0 \\\hline
m& string& a filter model out of \{ ideal, $\text{butterworth}^2$, gauss \} & gauss \\\hline
\end{tabular}
\end{description}
\subsection*{Low-/Highpass}
\begin{description}
\item [Plugin:] \emph{lowpass}, \emph{highpass}
\item [Description:]lowpass and high pass filter kernel
\item [Parameters:] f, w, m
\plugtabstart
f& float & cut-off frequency & 10.0\\\hline
m& string& a filter model out of \{ ideal, $\text{butterworth}^2$, gauss \} & gauss \\\hline
\end{tabular}
\end{description}
\section{2D Shapes}
\label{sec:2dshapes}
\subsection*{4n Neighborhood}
\begin{description}
\item [Plugin:] \emph{4n}
\item [Description:] the 4-n neighborhood shape
\begin{tabular}{|c|c|c|}
\hline
&X&\\
\hline
X&O&X\\
\hline
&X&\\
\hline
\end{tabular}
\item [Parameters:] none
\end{description}
\subsection*{8n Neighborhood}
\begin{description}
\item [Plugin:] \emph{8n}
\item [Description:] the 8-n neighborhood shape
\begin{tabular}{|c|c|c|}
\hline
X&X&X\\
\hline
X&O&X\\
\hline
X&X&X\\
\hline
\end{tabular}
\item [Parameters:] none
\end{description}
\subsection*{Circle}
\begin{description}
\item [Plugin:] \emph{circle}
\item [Description:] a disk shape
\item [Parameters:] r
\plugtabstart
r& float & radius of the disk & 1 \\\hline
\end{tabular}
\end{description}
\subsection*{Square}
\begin{description}
\item [Plugin:] \emph{square}
\item [Description:] a square shape (with the interior)
\item [Parameters:] w
\plugtabstart
w& int & edge length & 1 \\\hline
\end{tabular}
\end{description}
\section{3D Shapes}
\label{sec:3dshapes}
\subsection*{6n Neighborhood}
\begin{description}
\item [Plugin:] \emph{6n}
\item [Description:] the 6-n neighborhood shape
\item [Parameters:] none
\end{description}
\subsection*{18n Neighborhood}
\begin{description}
\item [Plugin:] \emph{18n}
\item [Description:] the 18-n neighborhood shape
\item [Parameters:] none
\end{description}
\subsection*{26n Neighborhood}
\begin{description}
\item [Plugin:] \emph{26n}
\item [Description:] the 26-n neighborhood shape
\item [Parameters:] none
\end{description}
\subsection*{Sphere}
\begin{description}
\item [Plugin:] \emph{sphere}
\item [Description:] a sphere shape (with interior)
\item [Parameters:] r
\plugtabstart
r& float & radius of the sphere & 1 \\\hline
\end{tabular}
\end{description}
\subsection*{Cube}
\begin{description}
\item [Plugin:] \emph{cube}
\item [Description:] a cube shape (with the interior)
\item [Parameters:] w
\plugtabstart
w& int & edge length & 1 \\\hline
\end{tabular}
\end{description}
\section{Noise Generator Plugins}
\label{sec:plugnoise}
The quality of the noise generators currently depends heavily on the quiality of the random generator
provided by the rand() function.
\subsection*{Gaussien Noise}
\begin{description}
\item [Plugin:] \emph{gauss}
\item [Description:] create Gaussian noise ( = normal distributed)
\item [Parameters:] mu, sigma
\plugtabstart
mu& float & mean value of noise distribution& 0 \\\hline
sigma & float & variance of noise distribution & 1 \\\hline
\end{tabular}
\end{description}
\subsection*{Uniform Noise}
\begin{description}
\item [Plugin:] \emph{uniform}
\item [Description:] create uniform noise
\item [Parameters:] a, b
\plugtabstart
a& float & lower limit of the random values& 0 \\\hline
b& float & upper limit of the random values & 1 \\\hline
\end{tabular}
\end{description}