[go: up one dir, main page]

Menu

[r996]: / libmona / doc / programs.tex  Maximize  Restore  History

Download this file

704 lines (587 with data), 26.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
\chapter{Mona2D Programs}
\newcommand\tabstart{\begin{tabular}{|p{0.12\columnwidth}|p{0.04\columnwidth}|p{0.1\columnwidth}|p{0.449\columnwidth}|p{0.1\columnwidth}|}
\hline}
\newcommand\tabend{\end{tabular}}
\newcommand\optinfile{--in-file & -i & string & input file name & (none) \\\hline}
\newcommand\optreffile{--ref-file & -r & string & reference file name & (none) \\\hline}
\newcommand\optoutfile{--out-file & -o & string & output file name & (none) \\\hline}
\newcommand\optoutbase{--out-base & -o & string & output file name base - a number and the type name will be added automatically& (none) \\\hline}
\newcommand\opttypetwod{--type & -t & string & output image file type (see Table \ref{tab:2dformats}) & png \\\hline}
\newcommand\opttypetwodb{--type & -t & string & output image file type (see Table \ref{tab:2dformats}) & exr \\\hline}
\newcommand\opttypethreed{--type & -t & string & output image file type (see Section \ref{tab:3dformats}) & vista \\\hline}
\newcommand\opthelpplugin{--help-plugins & & & print out all plugins and a short description & \\\hline}
This chapter lists all the software tools provided by mona2D.
The descriptions follow a designated pattern:
\begin{description}
\item [Program:]\emph{the command line program name}
\item [Description:]A description of the program
\item [Remarks:] additional notes
\item [Options:] list of options
\tabstart
long name & short name & value type & description of the parameter & default value\\
\hline
\tabend
\noindent
If no value type is given, then the option accepts no further parameter.
All programs support the following options:
\tabstart
--help & -? & & Print out some help & \\\hline
--usage & & & Print out a short help & \\\hline
--version & -v & & Print out version information & \\\hline
--copyright & & & Print out copyright information & \\\hline
--verbose & -V & string & set the verbosity of the output out of \{ debug, message, warning, fail, error, fatal\} & error \\\hline
\tabend
\end{description}
Input from and output to a variety of 2D and 3D file formats is implemented. Note, however, only binary and gray scale data is supported.
\begin{table}[h]
\caption{\label{tab:2dformats}2D image formats}
\centering{
\begin{tabular}{|l|l|c|}
\hline
File type description & on the web & suffix \\\hline
Windows Bitmap & http://www.daubnet.com/formats/BMP.html & bmp \\\hline
Portable Network Graphics & http://www.libpng.org & png \\\hline
Tagged Image File format & http://www.remotesensing.org/libtiff/libtiff.html & tif \\\hline
\end{tabular}
}
\end{table}
\begin{table}[h]
\caption{\label{tab:3dformats}3D image formats}
\centering{
\begin{tabular}{|l|l|c|}
\hline
File type description & on the web & suffix \\\hline
INRIA 3D File format &http://foveaproject.free.fr/softwareEng.html & inria \\\hline
Medical Imaging NetCDF & http://www.bic.mni.mcgill.ca/software/minc/ & mnc \\\hline
Sun TAAC Image File Format & & vff \\\hline
Vista File Format & http://www.cs.ubc.ca/nest/lci/vista/vista.html & v \\\hline
\end{tabular}
}
\end{table}
\section{Image Filtering}
\begin{description}
\item [Program:]\emph{eva-2dimagefilter}
\item [Description:]A 2D image filtering program. Supported filters are described in Section \ref{sec:plugins}.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypetwod
\opthelpplugin
\tabend
\item [Example:] Filtering an \texttt{input.png} with a median filter and anisotropic filtering and writing the output to \texttt{output.bmp},
thus converting the image to the Microsoft bitmap format after filtering.
\begin{lstlisting}
eva-2dimagefilter -i input.png -o output.bmp -t bmp \
median:w=3 aniso:iter=1000,psi=pm1
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:]\emph{eva-2dimagefilterstack}
\item [Description:]A 2D image filtering program that filters a series of images that are numbered consecutively.
Supported filters are described in Section \ref{sec:plugins}.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutbase
\opttypetwod
\opthelpplugin
\tabend
\item [Example:] Filtering images of the pattern \texttt{input0000.png} with a median filter and anisotropic
filtering and writing the output to \texttt{outputXXXX.bmp}, thus converting the image to the Microsoft
bitmap format after filtering.
XXXX represents the slice numbers that correspond to the input image slice numbers.
The number of digits corresponds to the number of digits in the input image file names.
\begin{lstlisting}
eva-2dimagefilterstack -i input0000.png -o output -t bmp \
median:w=3 aniso:iter=1000,psi=pm1
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:]\emph{eva-2dstackfilter}
\item [Description:]A 3D image filtering program that filters a series of images that are numbered consecutively.
the filters are applied as if the single images where slices of a 3D volume data set. i.e. the filters
are applied in a real 3D manner.
Supported filters are described in Section \ref{sec:2dstackfilters}.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypetwod
\opthelpplugin
\tabend
\item [Example:] Filtering images of the pattern \texttt{input0000.png} with a median filter and anisotropic
filtering and writing the output to \texttt{outputXXXX.bmp},
thus converting the image to the Microsoft bitmap format after filtering.
The number of digits corresponds to the number of digits in the input image file names.
\begin{lstlisting}
eva-2dfilterstack -i input0000.png -o output -t bmp \
median:w=3 aniso:iter=1000,psi=pm1
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-croproi }
\item [Description:] Selects a region of interest based on an intensity threshold from a stack of images.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypetwod
--br-thresh & -T & integer & background intensity threshold & 1 \\\hline
--borderwidth & -b & integer & width of the border to be preserved around the no-background area & 2 \\\hline
\tabend
\item [Example:] Crop a set of images by assuming all intensities below 10 are background, and a borderwidth of 4:
\begin{lstlisting}
eva-croproi -i input0000.png -o output%04d.png -T 10 -b 4
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-disttrans3d}
\item [Description:] Create a 3D distance map from a stack of binary images (white=object).
If the output images are stored in float format (currently only supported by the EXR format), then the scale parameter is ignored.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypetwodb
--scale & -s & float & fixed point scaling factor, corresponds to the --scale parameter of \emph{eva-distance2d} & 256 \\\hline
--self-test & & perform a self-test of the algorithm & \\\hline
\tabend
\item [Example 1:] create the distance transform images of input0000.png ... input0200.png and store the Euclidian distance scaled by a factor of 32
in dist0000.png ... dist0200.png
\begin{lstlisting}
eva-disttrans3d -i input0000.png -o dist -s 32
\end{lstlisting}
\item [Example 2:] create the distance transform images of input0000.png ... input0200.png and store the Euclidian distance as float values
dist0000.exr ... dist0200.exr
\begin{lstlisting}
eva-disttrans3d -i input0000.png -o dist -t exr
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-distance3d}
\item [Description:] evaluate the distances of a point set described by a stack of binary \emph{input} images to a point set defined by a stack of binary
\emph{reference} images. The output is a list of point coordinates plus distances given as a plain text file.
\item [Remarks:] It is required, that the input images and the reference images are of the same xy-size. However, it is not requred, that
th enumber of input images and reference images are equal.
It is only assumed that the z coordinate encoded in the image file name of \emph{input} and \emph{reference} images correspond.
\item [Options:] $\:$
\tabstart
\optinfile
\optreffile
\optoutfile
--self-test & & perform a self-test of the algorithm & \\\hline
\tabend
\item [Example:] Evaluate the distance of the points given in the image set image0000.png, \ldots to the point set given in the image set ref0000.png and
store the result in the text file distances.txt
\begin{lstlisting}
eva-disttrans3d -i image0000.png -r ref0000.png -o distances.txt
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-downscale3d}
\item [Description:] Downscaling of a stack of images in a real 3D manner
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypetwod
--size & -s & vector of integer & target 3D image size & 256,256,256 \\\hline
\tabend
\item [Example:]
\end{description}
\begin{description}
\item [Program:] \emph{eva-remap}
\item [Description:] apply k-means cluster values to an image
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--map & -m & string & k-means mapping file name & (none) \\\hline
--split & -s & & split the input file into a bit-file per class & \\\hline
\tabend
\item [Example:] Map the intensities of image \texttt{input.png} by using map \texttt{kmeans.txt} and write result to \texttt{mapped.png}.
\begin{lstlisting}
eva-remap -i input.png -m kmeans.map -o mapped.png
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-segment2d}
\item [Description:] a 2D fuzzy c-means segmentation with possible background field correction
\item [Remarks:] The bias field correction doesn't do work on tooth images.
Without it, it is better to use eva-cmeans on the histogram and remap the probabilities later.
Since the output probabilities are written to one file, the output format has to support multiple images per file (TIFF does).
This is not yet checked at runtime.
Since not all slices of an image stack contain all tissues, this program is not suited for doing real segmentations.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--no-of-classes & -a & integer & number of classes & 3 \\\hline
--bias-correct & -b & & apply bias field correction & \\\hline
--class-centres & -c & vector of float & initial class centers & \\\hline
--spread & -s & float & spread parameter describing the strength of tissue distinction & 64 \\\hline
\tabend
\item [Example:] Segment an image \texttt{input.tif} by using the standard parameters but show some processing output.
\begin{lstlisting}
eva-segment2d -i input.tif -o output.tif -V message
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-segment2dahmed}
\item [Description:] The modified fuzzy c-means algorithm described in \citet{ahmed02:cmeans}
\item [Remarks:] See \emph{eva-segment2d}.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--no-of-classes & -a & integer & number of classes & 3 \\\hline
--bias-correct & -b & & apply bias field correction & \\\hline
--class-centres & -c & vector of float & initial class centers & \\\hline
--neighbour & -n & string & a neighbourhood filter to smooth the segmentation & wmean:hw=1 \\\hline
--spread & -s & float & spread parameter describing the strength of tissue distinction & 64 \\\hline
\tabend
\item [Example:] Segment an image \texttt{input.tif} by using the standard parameters but show some processing output.
\begin{lstlisting}
eva-segment2dahmed -i input.tif -o output.tif -V message
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-segment3d}
\item [Description:] A 3D implementation of \emph{eva-segment2ddahmed}
\item [Remarks:] Without bias-fild corrections and filtering this programs boils down to a
memory-intensive version of \emph{eva-cmeans}.
Don't use it.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--no-of-classes & -a & integer & number of classes & 3 \\\hline
--bias-correct & -b & & apply bias field correction & \\\hline
--class-centres & -c & vector of float & initial class centers & \\\hline
--neighbour & -n & string & a neighbourhood filter to smooth the segmentation & (none) \\\hline
--spread & -s & float & spread parameter describing the strength of tissue distinction & 64 \\\hline
\tabend
\item [Example:] Segment an image \texttt{input.v} by using the standard parameters but show some processing output.
\begin{lstlisting}
eva-segment2dahmed -i input.v -o output.v -V message
\end{lstlisting}
\end{description}
\section{3D/2D image conversion}
\begin{description}
\item [Program:]\emph{eva-3dto2dimage}
\item [Description:]convert a 3D data set into a stack of 2D images
\item [Remarks:] The numbering of the output files starts with 0000 and numbers up to 9999 are supported.
The file name suffix is the same as the output type.
\item [Options:] $\:$
\tabstart
\optinfile
--out-basename & -o & string & output file name base & basename \\\hline
\opttypetwod
\tabend
\item [Example:] Convert a \emph{3D Sunraster} file \texttt{input.vff} to a set of \emph{Tagged Image File Format}
(TIFF) files \texttt{outputXXXX.tif}.
\begin{lstlisting}
eva-3dto2dimage -i input.vff -o output -t tif
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-raw2volume}
\item [Description:] convert raw image data to volume data
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--repn & -r & string & input pixel type & short \\\hline
--big-endian & -b & & set flag if input data is big endian & \\\hline
--size & -s & vector of integer & size of input NX,NY,NZ & 1,1,1 \\\hline
--scale & -f & vector of float & scale of input voxels FX,FY,FZ & 1.0,1.0,1.0 \\\hline
\opttypethreed
\tabend
\item [Example:] Convert a raw volume data set \texttt{input.dat} of size 260,260,400 with a voxel
size of 2.0,1.0,1.5 and big endian 16 bit integers to a vista image \texttt{output.v}
\begin{lstlisting}
eva-raw2volume -i input.dat -o output.v -s 260,260,400 -f 2.0,1.0,1.5 -b -r short
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-imagestackto3d}
\item [Description:] convert a stack of images to a 3D file
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\opttypethreed
\tabend
\item [Example:] Convert a stack of 2D images of pattern \texttt{input0000.png} to a SunRaster 3D file \texttt{output.vff}:
\begin{lstlisting}
eva-imagestackto3d -i input0000.png -t vff -o output.vff
\end{lstlisting}
\end{description}
\section{Image Analysis}
\begin{description}
\item [Program:] \emph{eva-count-pixels}
\item [Description:] This program takes a stack of binary images, counts the white pixels and writes the result to stdout.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
--pattern & -p & string & input file pattern given as C-format string & \\\hline
--start & & int & input start range for pattern & 0 \\\hline
--end & & int & input end range for pattern & 65535 \\\hline
--edge-length & 'e' & float & (homogenous) edge length of a voxel & 1.0 \\\hline
\tabend
\item [Example:] Count the pixels of the files from number 10 to 30 with pattern \texttt{enamel\%04d.png}, e.g. the result of enamel segmentation.
\begin{lstlisting}
eva-count-pixels -p enamel%04d.png --start 10 --end 30
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-distance2d }
\item [Description:] Evaluate the distance of an image to a reference which is given as a distance field produced by the plugin \emph{distace} (Section \ref{sec:distance}).
The result is written to \texttt{stdout}.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
--distance-file & -d& distance image file & \\\hline
--scale & -s & float & fixed point scaling factor, the standart value corresponds to the
scaling used by the distance transform plugin and \emph{eva-disttrans3d}& 256.0 \\\hline
--method & -m & string & distance measuring method (avg, max) & avg \\\hline
\tabend
\item [Example 1:] evaluate the distace of image \texttt{border.png} based on the distance image \texttt{refborder-distfield.png}:
\begin{lstlisting}
eva-distance2d -i border.png -d refborder-distfield.png
\end{lstlisting}
\item [Example 2:] evaluate the distace of image \texttt{border.png} to the reference border image \texttt{ref-border.png}
\begin{lstlisting}
eva-2dimagefilter -i ref-border.png -o refborder-distfield.png distance
eva-distance2d -i border.png -d refborder-distfield.png
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-intensity-projection}
\item [Description:] Evaluate an intensity projection of a image stack along the three orthogonal axis.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutbase
\opttypetwod
--op & -p & string & type of projection (average|max) & max \\\hline
\tabend
\item [Example:] Evaluate the maximum intensity projection of the files stack \texttt{tooth756\_0000.tif} and write it to \texttt{project\_axial.png},
\texttt{project\_coronal.png}, and \texttt{project\_saggital.png}.
\begin{lstlisting}
eva-intensity-projection -i tooth756_0000.tif -o project -t png -p max
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-multihisto }
\item [Description:] Evaluate the histogram of a stack of images and writes a suggested backgound threshold to stdout.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--single & -s & & override the number pattern and evaluate histogram of only the single image given at the command line & \\\hline
\tabend
\item [Example:] Evaluate the histogram of \texttt{tooth756\_0000.tif} and write the histogram to \texttt{histo.dat}.
\begin{lstlisting}
eva-imagestackto3d -i tooth756_0000.tif -o histo.dat
\end{lstlisting}
\end{description}
\section{Histogram processing}
These programs read from stdin and write to stdout. Therefore, the histogram and output should be piped.
\begin{description}
\item [Program:]\emph{eva-cmeans}
\item [Description:]fuzzy c-means algorithm for histograms
\item [Remarks:] Usually, it is a good idea to set the verbosity to \emph{message} in order to see, how well the classification works.
If two class centers converge to the very same value, it is best to increase the k-value.
\item [Options:] $\:$
\tabstart
--class-centers & -c & vector of float & initial class centers, values >1.0 refere to absolute intensities,
values <1.0 refere to values relative to the histogram size & \\\hline
--even-start & -e & & distribute the class centers evenly over the histogram, prior to processing (use instead of option -c)& \\\hline
--variance & -k & float & variance parameter, describes how well the clusters are seperated & 32 \\\hline
--max-iter & -m & integer & maximum number of iterations & 100 \\\hline
--nclasses & -n & integer & number of classes, don't use this with the -c option, because there, the number is given implicitely & 3 \\\hline
\tabend
\item [Example:] Cluster Histogram \texttt{histo.dat} into 3 classes with initially given centers and write the result to \texttt{cmeans.txt}.
\begin{lstlisting}
eva-cmeans <histo.dat -c 0,13000,32000 >cmeans.txt
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-kmeans}
\item [Description:] The k-meams algorithm for histograms
\item [Remarks:]
\item [Options:] $\:$
\tabstart
--even-start & -e & & distribute the class centers evenly over the histogram, prior to processing (use instead of option -c)& \\\hline
--max-iter & -m & integer & maximum number of iterations & 100 \\\hline
--nclasses & -n & integer & number of classes, don't use this with the -c option, because there, the number is given implicitely & 10 \\\hline
\tabend
\item [Example:] Cluster the histogram \texttt{histo.dat} into 12 classes, start evenly and write the result to \texttt{kmeans.txt}.
\begin{lstlisting}
eva-kmeans <histo.dat -c 12 -e >kmeans.txt
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-labelsort}
\item [Description:] Sort the histogram, and output a remapping map
\item [Remarks:]
\item [Options:] This program doesn not support further options.
\item [Example:] Sort the histogram \texttt{histo.dat} and write the mapping table to \texttt{map.txt}.
\begin{lstlisting}
eva-labelsort <histo.dat >map.txt
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-anahisto.py}
\item [Description:] Evaluate mean, median, and standart deviation of a histogram
\item [Remarks:] Requires Python to be installed
\item [Options:] This program doesn not support further options.
\item [Example:] Read the histogram \texttt{histo.dat} and write the results to stdout
\begin{lstlisting}
eva-anahisto.py <histo.dat
\end{lstlisting}
\end{description}
\section{Image Combination}
\begin{description}
\item [Program:]\emph{eva-border2d}
\item [Description:]Dilates two bit images and evaluates the overlap of the results. This can be used to evaluate boundaries.
\item [Options:] $\:$
\tabstart
--file1 & -1 & string & input image 1 & (none) \\\hline
--file2 & -2 & string & input image 2 & (none) \\\hline
\optoutfile
\opttypetwod
--dilate & -d & string & dilate mask (see Section \ref{sec:2dshapes}) & 4n \\\hline
\tabend
\item [Example:] Dialate image enamel.png and dentine.png with the 4-neighbourhood mask, evaluate the overlap, and store the result in border.png
(See Figure \ref{fig:border2d}).
\begin{lstlisting}
eva-border2d -1 test1.png -2 test2.png -d 4n -o border.png
\end{lstlisting}
\end{description}
\noindent
\colorbox{listinggray}{
\\[\intextsep]
\begin{minipage}{\linewidth}
\centering{\vspace{5mm}
\resizebox{0.3\columnwidth}{!}{\includegraphics{examples/enamel.png}}
\resizebox{0.3\columnwidth}{!}{\includegraphics{examples/dentine.png}}
\resizebox{0.3\columnwidth}{!}{\includegraphics{examples/border.png}}
\figcaption{\label{fig:border2d} From left to right: enamel.png, dentine.png, and border.png as result of eva-border2d}
}
\end{minipage}
\\[\intextsep]
}
\begin{description}
\item [Program:]\emph{eva-combineimages}
\item [Description:]Evaluates the pixel-wise logical combination of two bit-valued images.
\item [Options:] $\:$
\tabstart
--file1 & -1 & string & input image 1 & (none) \\\hline
--file2 & -2 & string & input image 2 & (none) \\\hline
--op & -p & string &logical operation (and|or|xor|nand|nor|nxor), ses also Figure \ref{fig:combine} & and \\\hline
\optoutfile
\opttypetwod
\tabend
\item [Example1:] Evaluate the areas that do not overlap from images test1.png and test2.png
\begin{lstlisting}
eva-combineimages -1 test1.png -2 test2.png -p xor -o diff.png
\end{lstlisting}
\item [Example2:] Evaluate the unmasked reminder of two images - e.g. to evaluate the dentine, if background and enamel masks are given:
\begin{lstlisting}
eva-combineimages -1 enamel.png -2 background.png -p nor -o dentine.png
\end{lstlisting}
\end{description}
\noindent
\colorbox{listinggray}{
\\[\intextsep]
\begin{minipage}{\linewidth}
\centering{\vspace{5mm}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/circle.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/square.png}}
\vspace{2mm}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/and.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/or.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/xor.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/nand.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/nor.png}}
\resizebox{0.15\columnwidth}{!}{\includegraphics{examples/nxor.png}}
}
\figcaption{\label{fig:combine} Top row: original binary images.
Bottom row f.l.t.r: Result by applying and, or, xor, nand, nor, nxor.
}
\end{minipage}
\\[\intextsep]
}
\begin{description}
\item [Program:] \emph{eva-maskdentine}
\item [Description:] Given two input masks $A$ and $B$ of an image area $\Omega$, evaluate the mask $C:= \Omega \ (A \cup B)$.
\item [Remarks:] Obsolete, use \emph{eva-combineimages -p nor} instead.
\item [Options:] $\:$
\tabstart
--file1 & -1 & string & input image 1 & (none) \\\hline
--file2 & -2 & string & input image 2 & (none) \\\hline
\optoutfile
\opttypetwod
\tabend
\item [Example:] Evaluate the unlabeled pixels from \texttt{enamel.png} and \texttt{bg.png} and write it to \texttt{dentine.png}.
\begin{lstlisting}
eva-maskdentine -1 enamel.png -2 bg.png -o dentine.png
\end{lstlisting}
\end{description}
\section{Composition}
\begin{description}
\item [Program:] \emph{tiff-compose}
\item [Description:] Compose a colour image from a TIFF files that contains three grey scale images.
\item [Remarks:]
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
\tabend
\item [Example:] Create a colour \texttt{colormap.tif} image from a segmentation \texttt{segmented.tif}.
\begin{lstlisting}
tiff-compose -i segmented.tif -o colormap.tif
\end{lstlisting}
\end{description}
\begin{description}
\item [Program:] \emph{eva-prob2color}
\item [Description:] reads an image and a probability map and generates a color
image displaying the probabilities of the classes dentine, enamel
and background - assuming the probability map has only three classes.
\item [Remarks:] So far this program only writes TIFF images.
\item [Options:] $\:$
\tabstart
\optinfile
\optoutfile
--map & -m & string & probability map file name & (none) \\\hline
\tabend
\item [Example:] Read an inpt image \texttt{original.png}, apply a probability map obtained from \emph{eva-cmeans}
\texttt{cmeans.txt} and write it to \texttt{colormap.tif}
\begin{lstlisting}
tiff-compose -i original.png -m cmeans.txt -o colormap.tif
\end{lstlisting}
\end{description}
\section{Miscellaneous}
\begin{description}
\item [Program:] \emph{eva-filenumber-pattern}
\item [Description:] writes out a number pattern for a given file name.
This is useful for scripts that may be able to handle differently formated numbered image stacks.
\item [Remarks:] Currently, the file has to exist.
\item [Example:] Print the numbering pattern of \texttt{file00012.png}, this will write out \texttt{00000}.
\begin{lstlisting}
eva-filenumber-pattern file00012.png
\end{lstlisting}
\end{description}