[go: up one dir, main page]

Menu

[r711]: / mia2 / mia / 2d / nfg.cc  Maximize  Restore  History

Download this file

173 lines (133 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/* -*- mia-c++ -*-
* Copyright (c) 2007 Gert Wollny <gert.wollny at web de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <stdexcept>
#include <mia/2d/nfg.hh>
#include <mia/core/msgstream.hh>
NS_MIA_BEGIN
using namespace std;
EXPORT_2D float get_jump_level(const C2DImage& image, float noise_level)
{
double sum = 0.0;
C2DFVectorfield gradient = get_gradient(image);
for (C2DFVectorfield::const_iterator g = gradient.begin(); g != gradient.end(); ++g) {
sum += g->norm();
}
return noise_level * sum / gradient.size();
}
EXPORT_2D float get_jump_level(const C2DImage& image)
{
return get_jump_level(image, get_noise_level(image));
}
EXPORT_2D C2DFVectorfield get_nfg_n(const C2DImage& image, float noise_level)
{
C2DFVectorfield gradient = get_gradient(image);
double sum = 0.0;
for (C2DFVectorfield::const_iterator g = gradient.begin(); g != gradient.end(); ++g)
sum += g->norm();
const float jump_level = noise_level * sum / gradient.size();
const float e2 = jump_level * jump_level;
if (e2 != 0.0) {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g)
*g /= sqrt(g->norm2() + e2);
} else {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g) {
float n2 = g->norm2();
if (n2 > 0)
*g /= sqrt(g->norm2());
}
}
return gradient;
}
class CNoiseLevel: public TFilter<float> {
public:
template <typename T>
float operator () (const T2DImage<T>& data) const {
double sum1 = 0.0;
double sum2 = 0.0;
if (data.get_size().x < 3 ||
data.get_size().y < 3)
throw invalid_argument("input too small to support noise level estimation\n");
const size_t yn = data.get_size().y - 1;
const size_t xn = data.get_size().x - 1;
const size_t xs = data.get_size().x;
typename T2DImage<T>::const_iterator i = data.begin();
for (size_t y = 0; y < yn; ++y) {
for (size_t x = 0; x < xn; ++x, ++i) {
double delta1 = double(*i) - double(i[1]);
double delta2 = double(*i) - double(i[xs]);
sum2 += delta2 * delta2 + delta1 * delta1;
sum1 += fabs(delta1) + fabs(delta2);
}
double delta2 = double(*i) - double(i[xs]);
sum2 += delta2 * delta2;
sum1 += fabs(delta2);
++i;
};
for (size_t x = 0; x < xn; ++x, ++i) {
double delta1 = double(*i) - double(i[1]);
sum2 += delta1 * delta1;
sum1 += fabs(delta1);
}
double n = 2 * xn * yn + xn + yn;
return sqrt((sum2 - sum1 * sum1 / n) / (n - 1)); // / (range + 1);
}
};
EXPORT_2D float get_noise_level(const C2DImage& image)
{
CNoiseLevel f;
return mia::filter(f, image);
}
EXPORT_2D C2DFVectorfield get_nfg_j(const C2DImage& image, float jump_level2)
{
assert(jump_level2 >= 0.0f);
C2DFVectorfield gradient = get_gradient(image);
if (jump_level2 != 0.0f) {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g)
*g /= sqrt(g->norm2() + jump_level2);
}else {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g) {
float n2 = g->norm2();
if (n2 > 0.0f)
*g /= sqrt(g->norm2());
}
}
return gradient;
}
EXPORT_2D C2DFVectorfield get_nfg(const C2DImage& image)
{
float noise_level = get_noise_level(image);
C2DFVectorfield gradient = get_gradient(image);
double sum = 0.0;
for (C2DFVectorfield::const_iterator g = gradient.begin(); g != gradient.end(); ++g)
sum += g->norm();
const float jump_level = noise_level * sum / gradient.size();
const float e2 = jump_level * jump_level;
if (e2 != 0.0f) {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g)
*g /= sqrt(g->norm2() + e2);
}else {
for (C2DFVectorfield::iterator g = gradient.begin(); g != gradient.end(); ++g) {
float n2 = g->norm2();
if (n2 > 0.0f)
*g /= sqrt(g->norm2());
}
}
return gradient;
}
NS_MIA_END