[go: up one dir, main page]

Menu

[r118]: / lpi_math2d.cpp  Maximize  Restore  History

Download this file

339 lines (278 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
Copyright (c) 2005-2008 Lode Vandevenne
All rights reserved.
This file is part of Lode's Programming Interface.
Lode's Programming Interface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Lode's Programming Interface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Lode's Programming Interface. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lpi_math2d.h"
#include <cmath>
#include <iostream>
namespace lpi
{
Vector2::Vector2(double x, double y) : x(x), y(y)
{
}
Vector2::Vector2() /*: x(0.0), y(0.0)*/
{
}
Vector2::Vector2(const Vector2& other) : x(other.x), y(other.y)
{
}
Vector2& Vector2::operator+=(const Vector2& v)
{
x += v.x;
y += v.y;
return *this;
}
Vector2& Vector2::operator-=(const Vector2& v)
{
x -= v.x;
y -= v.y;
return *this;
}
Vector2& Vector2::operator*=(double a)
{
x *= a;
y *= a;
return *this;
}
Vector2& Vector2::operator/=(double a)
{
x /= a;
y /= a;
return *this;
}
//Subtract two vectors: a----->b is b minus a
Vector2 operator-(const Vector2& v, const Vector2& w)
{
Vector2 u = v;
u -= w;
return u;
}
void Vector2::negate()
{
x = -x;
y = -y;
}
void Vector2::clamp(double value)
{
double v = lengthsq();
if(v > value * value)
{
(*this) *= (value * value / v);
}
}
//Return the negative of the vector
Vector2 operator-(const Vector2& v)
{
Vector2 u = v;
u.negate();
return u;
}
//Add two vectors
Vector2 operator+(const Vector2& v, const Vector2& w)
{
Vector2 u = v;
u += w;
return u;
}
//Multiplies a vector by a scalar
Vector2 operator*(const Vector2& v, double a)
{
Vector2 w = v;
w *= a;
return w;
}
//Multiplies a vector by a scalar
Vector2 operator*(double a, const Vector2& v)
{
Vector2 w = v;
w *= a;
return w;
}
//Divides a vector through a scalar
Vector2 operator/(const Vector2& v, double a)
{
Vector2 w = v;
w /= a;
return w;
}
////////////////////////////////////////////////////////////////////////////////
double Vector2::length() const
{
return std::sqrt(x * x + y * y);
}
double Vector2::lengthsq() const
{
return x * x + y * y;
}
double Vector2::manhattan() const
{
return std::abs(x) + std::abs(y);
}
double length(const Vector2& v)
{
return std::sqrt(v.x * v.x + v.y * v.y);
}
double lengthsq(const Vector2& v)
{
return v.x * v.x + v.y * v.y;
}
double manhattan(const Vector2& v)
{
return std::abs(v.x) + std::abs(v.y);
}
void Vector2::normalize()
{
double l = length();
if(l != 0.0)
{
x /= l;
y /= l;
}
}
Vector2 normalize(const Vector2& v)
{
Vector2 result = v;
result.normalize();
return result;
}
double Vector2::distance(const Vector2& v)
{
return std::sqrt((v.x - x) * (v.x - x) + (v.y - y) * (v.y - y));
}
double Vector2::distancesq(const Vector2& v)
{
return (v.x - x) * (v.x - x) + (v.y - y) * (v.y - y);
}
double Vector2::manhattan(const Vector2& v)
{
return std::abs(v.x - x) + std::abs(v.y - y);
}
double distance(const Vector2& v, const Vector2& w)
{
return std::sqrt((v.x - w.x) * (v.x - w.x) + (v.y - w.y) * (v.y - w.y));
}
double distancesq(const Vector2& v, const Vector2& w) //square of the distance, no square root taken
{
return (v.x - w.x) * (v.x - w.x) + (v.y - w.y) * (v.y - w.y);
}
double manhattan(const Vector2& v, const Vector2& w) //square of the distance, no square root taken
{
return std::abs(v.x - w.x) + std::abs(v.y - w.y);
}
double Vector2::dot(const Vector2& v)
{
return v.x * x + v.y * y;
}
double dot(const Vector2& v, const Vector2& w)
{
return v.x * w.x + v.y * w.y;
}
////////////////////////////////////////////////////////////////////////////////
//returns the component of v in the direction dir (dir must be normalized, otherwise the factor is wrong)
Vector2 getComponentInDirection(const Vector2& v, const Vector2& dir)
{
/*Vector2 dirn = normalize(dir);
double mag = dot(v, dirn);
Vector2 proj = mag * dirn;
return proj;*/
return dir * dot(v, dir);
}
//get distance from point p to the line given by a and b
double distancePointLine(const Vector2& p, const Vector2& a, const Vector2& b)
{
//Explanationn of the formula: see Vector3 version of this function.
double k = -((b.x-a.x)*(a.x-p.x)+(b.y-a.y)*(a.y-p.y))/((b.x-a.x)*(b.x-a.x) + (b.y-a.y)*(b.y-a.y));
Vector2 q;
q.x = a.x + k * (b.x - a.x);
q.y = a.y + k * (b.y - a.y);
return distance(p, q);
}
double distancePointLineSegment(const Vector2& p, const Vector2& a, const Vector2& b)
{
double k = -((b.x-a.x)*(a.x-p.x)+(b.y-a.y)*(a.y-p.y))/((b.x-a.x)*(b.x-a.x) + (b.y-a.y)*(b.y-a.y));
if(k < 0) return distance(p, a);
else if(k > 1) return distance(p, b);
else
{
Vector2 q;
q.x = a.x + k * (b.x - a.x);
q.y = a.y + k * (b.y - a.y);
return distance(p, q);
}
}
////////////////////////////////////////////////////////////////////////////////
//not perspective correct
void barycentric(double& alpha, double& beta, double& gamma, const lpi::Vector2& a, const lpi::Vector2& b, const lpi::Vector2& c, const lpi::Vector2& p)
{
/*
The formula in non-optimized form:
gamma = ((a.y-b.y)*p.x + (b.x-a.x)*p.y + a.x*b.y - b.x*a.y)
/ ((a.y-b.y)*c.x + (b.x-a.x)*c.y + a.x*b.y - b.x*a.y);
beta = ((a.y-c.y)*p.x + (c.x-a.x)*p.y + a.x*c.y - c.x*a.y)
/ ((a.y-c.y)*b.x + (c.x-a.x)*b.y + a.x*c.y - c.x*a.y);
alpha = 1.0 - beta - gamma;
*/
//It becomes much simpler by subtracting a from everything, making a.x and a.y 0, gamma and beta can even share the same denominator because only the sign differs
Vector2 ba = b - a;
Vector2 ca = c - a;
Vector2 pa = p - a;
double invdenom = 1.0 / (ba.x * ca.y - ba.y * ca.x);
gamma = (ba.x * pa.y - ba.y * pa.x) * invdenom;
beta = (ca.y * pa.x - ca.x * pa.y) * invdenom;
alpha = 1.0 - beta - gamma;
}
bool intersectLineSegmentLineSegment(Vector2& result, const Vector2& a0, const Vector2& a1, const Vector2& b0, const Vector2& b1)
{
double noemer = ((b1.y-b0.y)*(a1.x-a0.x) - (b1.x-b0.x)*(a1.y-a0.y));
double ua = ((b1.x-b0.x)*(a0.y-b0.y) - (b1.y-b0.y)*(a0.x-b0.x)) / noemer;
double ub = ((a1.x-a0.x)*(a0.y-b0.y) - (a1.y-a0.y)*(a0.x-b0.x)) / noemer;
result = a0 + ua * (a1 - a0);
return (ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0);
}
////////////////////////////////////////////////////////////////////////////////
bool deflect(Vector2& dir, const Vector2& shooterpos, const Vector2& targetpos, const Vector2& vel, double speed)
{
double a = speed * speed - lengthsq(vel);
double b = -(2.0 * dot(vel, targetpos - shooterpos));
double c = -lengthsq(targetpos - shooterpos);
double D = b * b - 4.0 * a * c; //discriminant
if(D <= 0.0 || a == 0.0)
{
dir = normalize(targetpos - shooterpos); //vel too fast for bullet's speed, so ignore it
return false;
}
else
{
double sqD = std::sqrt(D);
double t1 = (-b + sqD) / (2.0 * a); //time of hit solution 1
double t2 = (-b - sqD) / (2.0 * a); //time of hit solution 2
if(t1 < 0.0 && t2 < 0.0) //we can only hit the enemy in negative time, so no proper solution found
{
dir = normalize(targetpos - shooterpos); //vel too fast for bullet's speed, so ignore it
return false;
}
else
{
double t; //pick the smallest nonnegative value
if (t1 < 0.0) t = t2;
else if(t2 < 0.0) t = t1;
else if(t1 < t2) t = t1;
else t = t2;
Vector2 intercept = targetpos + t * vel;
dir = normalize(intercept - shooterpos);
return true;
}
}
}
}