[go: up one dir, main page]

Menu

[r81]: / lpi_math4d.cpp  Maximize  Restore  History

Download this file

286 lines (241 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*
Copyright (c) 2005-2008 Lode Vandevenne
All rights reserved.
This file is part of Lode's Programming Interface.
Lode's Programming Interface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Lode's Programming Interface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Lode's Programming Interface. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lpi_math4d.h"
#include <iostream>
namespace lpi
{
Vector4::Vector4(double x, double y, double z, double w) : x(x), y(y), z(z), w(w)
{
}
Vector4::Vector4() /*: x(0.0), y(0.0), z(0.0), w(0.0)*/
{
}
void Vector4::convertTo(Vector3& v)
{
v.x = x / w;
v.y = y / w;
v.z = z / w;
}
void Vector4::convertFrom(const Vector3& v)
{
x = v.x;
y = v.y;
z = v.z;
w = 1.0;
}
Vector4& Vector4::operator+=(const Vector4& v)
{
x += v.x;
y += v.y;
z += v.z;
w += v.w;
return *this;
}
Vector4& Vector4::operator-=(const Vector4& v)
{
x -= v.x;
y -= v.y;
z -= v.z;
w -= v.w;
return *this;
}
Vector4& Vector4::operator*=(double a)
{
x *= a;
y *= a;
z *= a;
w *= a;
return *this;
}
Vector4& Vector4::operator/=(double a)
{
x /= a;
y /= a;
z /= a;
w /= a;
return *this;
}
//Add two vectors
Vector4 operator+(const Vector4& v, const Vector4& w)
{
Vector4 u = v;
u += w;
return u;
}
//Multiplies a vector by a scalar
Vector4 operator*(const Vector4& v, double a)
{
Vector4 w = v;
w *= a;
return w;
}
//Multiplies a vector by a scalar
Vector4 operator*(double a, const Vector4& v)
{
Vector4 w = v;
w *= a;
return w;
}
//Divides a vector through a scalar
Vector4 operator/(const Vector4& v, double a)
{
Vector4 w = v;
w /= a;
return w;
}
////////////////////////////////////////////////////////////////////////////////
Matrix4::Matrix4() {}
Matrix4::Matrix4(const Matrix4& m)
{
for(int i = 0; i < 4; i++) a[i] = m.a[i];
}
void Matrix4::operator=(const Matrix4& m)
{
for(int i = 0; i < 4; i++) a[i] = m.a[i];
}
void Matrix4::transpose()
{
std::swap(a[0][1], a[1][0]);
std::swap(a[0][2], a[2][0]);
std::swap(a[0][3], a[3][0]);
std::swap(a[1][2], a[2][1]);
std::swap(a[1][3], a[3][1]);
std::swap(a[2][3], a[3][2]);
}
void Matrix4::subMatrix(Matrix3& out, int i, int j )
{
int di, dj, si, sj;
// loop through 3x3 submatrix
for( di = 0; di < 3; di ++ )
for( dj = 0; dj < 3; dj ++ )
{
// map 3x3 element (destination) to 4x4 element (source)
si = di + ( ( di >= i ) ? 1 : 0 );
sj = dj + ( ( dj >= j ) ? 1 : 0 );
// copy element
out.a[di][dj] = a[si][sj];
}
}
double Matrix4::determinant()
{
double det, result = 0, i = 1;
Matrix3 msub3;
for(int n = 0; n < 4; n++, i *= -1)
{
subMatrix(msub3, 0, n);
det = msub3.determinant();
result += a[0][n] * det * i;
}
return(result);
}
void Matrix4::invert()
{
double mdet = determinant();
Matrix3 mtemp;
int sign;
Matrix4 result;
for (int i = 0; i < 4; i++ )
for (int j = 0; j < 4; j++ )
{
sign = 1 - ((i + j) % 2) * 2;
subMatrix(mtemp, i, j);
result.a[i][j] = (mtemp.determinant() * sign) / mdet;
}
*this = result;
}
Matrix4 operator*(const Matrix4& A, const Matrix4& B)
{
Matrix4 C;
C.a[0][0] = A.a[0][0]*B.a[0][0] + A.a[1][0]*B.a[0][1] + A.a[2][0]*B.a[0][2] + A.a[3][0]*B.a[0][3];
C.a[0][1] = A.a[0][1]*B.a[0][0] + A.a[1][1]*B.a[0][1] + A.a[2][1]*B.a[0][2] + A.a[3][1]*B.a[0][3];
C.a[0][2] = A.a[0][2]*B.a[0][0] + A.a[1][2]*B.a[0][1] + A.a[2][2]*B.a[0][2] + A.a[3][2]*B.a[0][3];
C.a[0][3] = A.a[0][3]*B.a[0][0] + A.a[1][3]*B.a[0][1] + A.a[2][3]*B.a[0][2] + A.a[3][3]*B.a[0][3];
C.a[1][0] = A.a[0][0]*B.a[1][0] + A.a[1][0]*B.a[1][1] + A.a[2][0]*B.a[1][2] + A.a[3][0]*B.a[1][3];
C.a[1][1] = A.a[0][1]*B.a[1][0] + A.a[1][1]*B.a[1][1] + A.a[2][1]*B.a[1][2] + A.a[3][1]*B.a[1][3];
C.a[1][2] = A.a[0][2]*B.a[1][0] + A.a[1][2]*B.a[1][1] + A.a[2][2]*B.a[1][2] + A.a[3][2]*B.a[1][3];
C.a[1][3] = A.a[0][3]*B.a[1][0] + A.a[1][3]*B.a[1][1] + A.a[2][3]*B.a[1][2] + A.a[3][3]*B.a[1][3];
C.a[2][0] = A.a[0][0]*B.a[2][0] + A.a[1][0]*B.a[2][1] + A.a[2][0]*B.a[2][2] + A.a[3][0]*B.a[2][3];
C.a[2][1] = A.a[0][1]*B.a[2][0] + A.a[1][1]*B.a[2][1] + A.a[2][1]*B.a[2][2] + A.a[3][1]*B.a[2][3];
C.a[2][2] = A.a[0][2]*B.a[2][0] + A.a[1][2]*B.a[2][1] + A.a[2][2]*B.a[2][2] + A.a[3][2]*B.a[2][3];
C.a[2][3] = A.a[0][3]*B.a[2][0] + A.a[1][3]*B.a[2][1] + A.a[2][3]*B.a[2][2] + A.a[3][3]*B.a[2][3];
C.a[3][0] = A.a[0][0]*B.a[3][0] + A.a[1][0]*B.a[3][1] + A.a[2][0]*B.a[3][2] + A.a[3][0]*B.a[3][3];
C.a[3][1] = A.a[0][1]*B.a[3][0] + A.a[1][1]*B.a[3][1] + A.a[2][1]*B.a[3][2] + A.a[3][1]*B.a[3][3];
C.a[3][2] = A.a[0][2]*B.a[3][0] + A.a[1][2]*B.a[3][1] + A.a[2][2]*B.a[3][2] + A.a[3][2]*B.a[3][3];
C.a[3][3] = A.a[0][3]*B.a[3][0] + A.a[1][3]*B.a[3][1] + A.a[2][3]*B.a[3][2] + A.a[3][3]*B.a[3][3];
return C;
}
Vector3 operator*(const Matrix4& A, const Vector3& v)
{
Vector3 result;
double w;
result.x = A.a[0][0] * v.x + A.a[1][0] * v.y + A.a[2][0] * v.z + A.a[3][0];
result.y = A.a[0][1] * v.x + A.a[1][1] * v.y + A.a[2][1] * v.z + A.a[3][1];
result.z = A.a[0][2] * v.x + A.a[1][2] * v.y + A.a[2][2] * v.z + A.a[3][2];
w = A.a[0][3] * v.x + A.a[1][3] * v.y + A.a[2][3] * v.z + A.a[3][3];
result /= w;
return result;
}
Vector4 operator*(const Matrix4& A, const Vector4& v)
{
Vector4 result;
result.x = A.a[0][0] * v.x + A.a[1][0] * v.y + A.a[2][0] * v.z + A.a[3][0];
result.y = A.a[0][1] * v.x + A.a[1][1] * v.y + A.a[2][1] * v.z + A.a[3][1];
result.z = A.a[0][2] * v.x + A.a[1][2] * v.y + A.a[2][2] * v.z + A.a[3][2];
result.w = A.a[0][3] * v.x + A.a[1][3] * v.y + A.a[2][3] * v.z + A.a[3][3];
return result;
}
Matrix4 operator*(const Matrix4& A, double d)
{
Matrix4 result;
for(int i = 0; i < 4; i++) result.a[i] = d * A.a[i];
return result;
}
Matrix4 operator*(double d, const Matrix4& A)
{
Matrix4 result;
for(int i = 0; i < 4; i++) result.a[i] = d * A.a[i];
return result;
}
void getTranslationMatrix4(Matrix4& m, const Vector3& d)
{
m.a[0] = m.a[1] = m.a[2] = Vector4_0;
m.a[3].x = d.x;
m.a[3].y = d.y;
m.a[3].z = d.z;
m.a[3].w = 1;
}
//returns a rotation matrix that rotates stuff by multiplying with this returned matrix, where you put this returned matrix on the left side of the multiplication.
void getRotationMatrix4(Matrix4& m, const Vector3& axis, double angle)
{
double c, s, t;
Vector3 axisn = normalize(axis);
//calculate parameters of the rotation matrix
c = std::cos(angle);
s = std::sin(angle);
t = 1 - c;
m.a[0][0] = t * axisn.x * axisn.x + c; m.a[0][1] = t * axisn.x * axisn.y + s * axisn.z; m.a[0][2] = t * axisn.x * axisn.z - s * axisn.y; m.a[0][3] = 0.0;
m.a[1][0] = t * axisn.x * axisn.y - s * axisn.z; m.a[1][1] = t * axisn.y * axisn.y + c; m.a[1][2] = t * axisn.y * axisn.z + s * axisn.x; m.a[1][3] = 0.0;
m.a[2][0] = t * axisn.x * axisn.z + s * axisn.y; m.a[2][1] = t * axisn.y * axisn.z - s * axisn.x; m.a[2][2] = t * axisn.z * axisn.z + c; m.a[2][3] = 0.0;
m.a[3][0] = 0.0; m.a[3][1] = 0.0; m.a[3][2] = 0.0; m.a[3][3] = 1.0;
}
void makeIdentity(Matrix4& m)
{
m.a[0][0] = m.a[1][1] = m.a[2][2] = m.a[3][3] = 1.0;
m.a[1][0] = m.a[2][0] = m.a[3][0] = m.a[0][1] = 0.0;
m.a[2][1] = m.a[3][1] = m.a[0][2] = m.a[1][2] = 0.0;
m.a[3][2] = m.a[0][3] = m.a[1][3] = m.a[2][3] = 0.0;
}
} //namespace lpi