[go: up one dir, main page]

Menu

[62db13]: / itpp / itstat.h  Maximize  Restore  History

Download this file

73 lines (62 with data), 2.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*!
* \file
* \brief Include file for the IT++ statistics module
* \author Adam Piatyszek and Conrad Sanderson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef ITSTAT_H
#define ITSTAT_H
/*!
* \defgroup stat Statistics Module
* @{
*/
//! \defgroup histogram Histogram
//! \defgroup statistics Miscellaneous Statistics Functions
/*! \defgroup MOG Mixture of Gaussians (MOG)
\brief Classes and functions for modelling multivariate data as a Mixture of Gaussians
\author Conrad Sanderson
The following example shows how to model data:
\code
Array<vec> X;
// ... fill X with vectors ...
int K = 3; // specify the number of Gaussians
int D = 10; // specify the dimensionality of vectors
MOG_diag model(K,D);
MOG_diag_kmeans(model, X, 10, 0.5, true, true); // initial optimisation using 10 iterations of k-means
MOG_diag_ML(model, X, 10, 0.0, 0.0, true); // final optimisation using 10 iterations of ML version of EM
double avg = model.avg_log_lhood(X); // find the average log likelihood of X
\endcode
See also the tutorial section for a more elaborate example.
*/
/*!
* @}
*/
#include <itpp/itbase.h>
#include <itpp/stat/histogram.h>
#include <itpp/stat/misc_stat.h>
#include <itpp/stat/mog_generic.h>
#include <itpp/stat/mog_diag.h>
#include <itpp/stat/mog_diag_kmeans.h>
#include <itpp/stat/mog_diag_em.h>
#endif // #ifndef ITSTAT_H