[go: up one dir, main page]

Menu

[0713af]: / models / geopack / T89.m  Maximize  Restore  History

Download this file

532 lines (524 with data), 15.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
function [BX,BY,BZ] = T89C(IOPT,PARMOD,PS,X,Y,Z);
% function [BX,BY,BZ] = T89(IOPT,PARMOD,PS,X,Y,Z);
% Tsyganenko's External Field Model, 1989 Version (T89)
% Translated from original FORTRAN March 27, 2003
% By Paul O'Brien (original by N.A. Tsyganenko)
% Paul.OBrien@aero.org (Nikolai.Tsyganenko@gsfc.nasa.gov)
%
% All subroutines enclosed here as subfunctions
%
% Updates:
% None so far
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBROUTINE T89C(IOPT,PARMOD,PS,X,Y,Z,BX,BY,BZ)
% C
% C
% C COMPUTES GSM COMPONENTS OF THE MAGNETIC FIELD PRODUCED BY EXTRA-
% C TERRESTRIAL CURRENT SYSTEMS IN THE GEOMAGNETOSPHERE. THE MODEL IS
% C VALID UP TO GEOCENTRIC DISTANCES OF 70 RE AND IS BASED ON THE MER-
% C GED IMP-A,C,D,E,F,G,H,I,J (1966-1974), HEOS-1 AND -2 (1969-1974),
% C AND ISEE-1 AND -2 SPACECRAFT DATA SET.
% C
% C THIS IS A MODIFIED VERSION (T89c), WHICH REPLACED THE ORIGINAL ONE
% C IN 1992 AND DIFFERS FROM IT IN THE FOLLOWING:
% C
% C (1) ISEE-1,2 DATA WERE ADDED TO THE ORIGINAL IMP-HEOS DATASET
% C (2) TWO TERMS WERE ADDED TO THE ORIGINAL TAIL FIELD MODES, ALLOWING
% C A MODULATION OF THE CURRENT BY THE GEODIPOLE TILT ANGLE
% C
% C
% C REFERENCE FOR THE ORIGINAL MODEL: N.A. TSYGANENKO, A MAGNETOSPHERIC MAGNETIC
% C FIELD MODEL WITH A WARPED TAIL CURRENT SHEET: PLANET.SPACE SCI., V.37,
% C PP.5-20, 1989.
% C
% C----INPUT PARAMETERS: IOPT - SPECIFIES THE GROUND DISTURBANCE LEVEL:
% C
% C IOPT= 1 2 3 4 5 6 7
% C CORRESPOND TO:
% C KP= 0,0+ 1-,1,1+ 2-,2,2+ 3-,3,3+ 4-,4,4+ 5-,5,5+ &gt =6-
% C
% C PS - GEODIPOLE TILT ANGLE IN RADIANS
% C X, Y, Z - GSM COORDINATES OF THE POINT IN EARTH RADII
% C
% C----OUTPUT PARAMETERS: BX,BY,BZ - GSM COMPONENTS OF THE MODEL MAGNETIC
% C FIELD IN NANOTESLAS
% c
% c THE PARAMETER PARMOD(10) IS A DUMMY ARRAY. IT IS NOT USED IN THIS
% C SUBROUTINE AND IS PROVIDED JUST FOR MAKING IT COMPATIBLE WITH THE
% C NEW VERSION (4/16/96) OF THE GEOPACK SOFTWARE.
% C
% C THIS RELEASE OF T89C IS DATED FEB 12, 1996;
% C--------------------------------------------------------------------------
% C
% C
% C AUTHOR: NIKOLAI A. TSYGANENKO
% C HSTX CORP./NASA GSFC
% C
% c
% c The small program below is an example of how to compute field
% c components with T89C.
% c See GEOPACK_EXAMPLE for an example of the field line tracing.
% % function test89
% % parmod = repmat(0,10,1);
% % iopt = 3;
% % ps = 0.5;
% % x = 1.5;
% % y = 2.5;
% % z = 3.5;
% % [bx,by,bz] = T89C(iopt,parmod,ps,x,y,z);
% % disp([bx,by,bz]);
% c
% c
% C
% DIMENSION XI(4),F(3),DER(3,30),PARAM(30,7),A(30),PARMOD(10)
PARAM = repmat(0,30,7);
PARAM(:) = [-116.53,-10719.,42.375,59.753,-11363.,1.7844,30.268, ...
-0.35372E-01,-0.66832E-01,0.16456E-01,-1.3024,0.16529E-02, ...
0.20293E-02,20.289,-0.25203E-01,224.91,-9234.8,22.788,7.8813, ...
1.8362,-0.27228,8.8184,2.8714,14.468,32.177,0.01,0.0, ...
7.0459,4.0,20.0,-55.553,-13198.,60.647,61.072,-16064., ...
2.2534,34.407,-0.38887E-01,-0.94571E-01,0.27154E-01,-1.3901, ...
0.13460E-02,0.13238E-02,23.005,-0.30565E-01,55.047,-3875.7, ...
20.178,7.9693,1.4575,0.89471,9.4039,3.5215,14.474,36.555, ...
0.01,0.0,7.0787,4.0,20.0,-101.34,-13480.,111.35,12.386,-24699., ...
2.6459,38.948,-0.34080E-01,-0.12404,0.29702E-01,-1.4052, ...
0.12103E-02,0.16381E-02,24.49,-0.37705E-01,-298.32,4400.9,18.692, ...
7.9064,1.3047,2.4541,9.7012,7.1624,14.288,33.822,0.01,0.0,6.7442, ...
4.0,20.0,-181.69,-12320.,173.79,-96.664,-39051.,3.2633,44.968, ...
-0.46377E-01,-0.16686,0.048298,-1.5473,0.10277E-02,0.31632E-02, ...
27.341,-0.50655E-01,-514.10,12482.,16.257,8.5834,1.0194,3.6148, ...
8.6042,5.5057,13.778,32.373,0.01,0.0,7.3195,4.0,20.0,-436.54, ...
-9001.0,323.66,-410.08,-50340.,3.9932,58.524,-0.38519E-01, ...
-0.26822,0.74528E-01,-1.4268,-0.10985E-02,0.96613E-02,27.557, ...
-0.56522E-01,-867.03,20652.,14.101,8.3501,0.72996,3.8149,9.2908, ...
6.4674,13.729,28.353,0.01,0.0,7.4237,4.0,20.0,-707.77,-4471.9, ...
432.81,-435.51,-60400.,4.6229,68.178,-0.88245E-01,-0.21002, ...
0.11846,-2.6711,0.22305E-02,0.10910E-01,27.547,-0.54080E-01, ...
-424.23,1100.2,13.954,7.5337,0.89714,3.7813,8.2945,5.174,14.213, ...
25.237,0.01,0.0,7.0037,4.0,20.0,-1190.4,2749.9,742.56,-1110.3, ...
-77193.,7.6727,102.05,-0.96015E-01,-0.74507,0.11214,-1.3614, ...
0.15157E-02,0.22283E-01,23.164,-0.74146E-01,-2219.1,48253., ...
12.714,7.6777,0.57138,2.9633,9.3909,9.7263,11.123,21.558,0.01, ...
0.0,4.4518,4.0,20.0];
% DATA IOP/10/
persistent IOP ID A
if isempty(IOP),
IOP = 10;
end
% C
if (IOP~=IOPT),
% C
ID=1;
IOP=IOPT;
A(1:30) = PARAM(1:30,IOPT);
% DO 1 I=1,30
% 1 A(I)=PARAM(I,IOPT)
% C
end
% C
XI(1)=X;
XI(2)=Y;
XI(3)=Z;
XI(4)=PS;
[F,DER] = T89_T89(ID,A,XI);
if (ID==1), ID=2; end;
BX=F(1);
BY=F(2);
BZ=F(3);
% end of function T89c
% C-------------------------------------------------------------------
% C
function [F, DER] = T89_T89 (ID, A, XI);
% SUBROUTINE T89 (ID, A, XI, F, DER)
% C
% C *** N.A. Tsyganenko *** 8-10.12.1991 ***
% C
% C Calculates dependent model variables and their deriva-
% C tives for given independent variables and model parame-
% C ters. Specifies model functions with free parameters which
% C must be determined by means of least squares fits (RMS
% C minimization procedure).
% C
% C Description of parameters:
% C
% C ID - number of the data point in a set (initial assignments are performed
% c only for ID=1, saving thus CPU time)
% C A - input vector containing model parameters;
% C XI - input vector containing independent variables;
% C F - output double precision vector containing
% C calculated values of dependent variables;
% C DER - output double precision vector containing
% C calculated values for derivatives of dependent
% C variables with respect to model parameters;
% C
% C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% C
% C T89 represents external magnetospheric magnetic field
% C in Cartesian SOLAR MAGNETOSPHERIC coordinates (Tsyganenko N.A.,
% C Planet. Space Sci., 1989, v.37, p.5-20; the "T89 model" with the warped
% c tail current sheet) + A MODIFICATION ADDED IN APRIL 1992 (SEE BELOW)
% C
% C Model formulas for the magnetic field components contain in total
% c 30 free parameters (17 linear and 13 nonlinear parameters).
% C First 2 independent linear parameters A(1)-A(2) correspond to contribu-
% c tion from the tail current system, then follow A(3) and A(4) which are the
% c amplitudes of symmetric and antisymmetric terms in the contribution from
% c the closure currents; A(5) is the ring current amplitude. Then follow the
% c coefficients A(6)-A(15) which define Chapman-Ferraro+Birkeland current field.
% c The coefficients c16-c19 (see Formula 20 in the original paper),
% c due to DivB=0 condition, are expressed through A(6)-A(15) and hence are not
% c independent ones.
% c A(16) AND A(17) CORRESPOND TO THE TERMS WHICH YIELD THE TILT ANGLE DEPEN-
% C DENCE OF THE TAIL CURRENT INTENSITY (ADDED ON APRIL 9, 1992)
% C
% C Nonlinear parameters:
% C
% C A(18) : DX - Characteristic scale of the Chapman-Ferraro field along the
% c X-axis
% C A(19) : ADR (aRC) - Characteristic radius of the ring current
% c A(20) : D0 - Basic half-thickness of the tail current sheet
% C A(21) : DD (GamRC)- defines rate of thickening of the ring current, as
% c we go from night- to dayside
% C A(22) : Rc - an analog of "hinging distance" entering formula (11)
% C A(23) : G - amplitude of tail current warping in the Y-direction
% C A(24) : aT - Characteristic radius of the tail current
% c A(25) : Dy - characteristic scale distance in the Y direction entering
% c in W(x,y) in (13)
% c A(26) : Delta - defines the rate of thickening of the tail current sheet
% c in the Y-direction (in T89 it was fixed at 0.01)
% c A(27) : Q - this parameter was fixed at 0 in the final version of T89;
% c initially it was introduced for making Dy to depend on X
% c A(28) : Sx (Xo) - enters in W(x,y) ; see (13)
% c A(29) : Gam (GamT) - enters in DT in (13) and defines rate of tail sheet
% c thickening on going from night to dayside; in T89 fixed at 4.0
% c A(30) : Dyc - the Dy parameter for closure current system; in T89 fixed
% c at 20.0
% c - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% C
% IMPLICIT REAL * 8 (A - H, O - Z)
% C
% REAL A(1), XI(1)
% C
% DIMENSION F(3), DER(3,30)
DER = repmat(nan,3,30);
% C
% INTEGER ID, I, L
% DATA A02,XLW2,YN,RPI,RT/25.D0,170.D0,30.D0,0.31830989D0,30.D0/
A02 = 25.D0;
XLW2 = 170.D0;
YN = 30.D0;
RPI = 0.31830989D0;
RT = 30.D0;
% DATA XD,XLD2/0.D0,40.D0/
XD = 0.D0;
XLD2 = 40.D0;
% C
% C The last four quantities define variation of tail sheet thickness along X
% C
% DATA SXC,XLWC2/4.D0,50.D0/
SXC = 4.D0;
XLWC2 = 50.D0;
% C
% C The two quantities belong to the function WC which confines tail closure
% c current in X- and Y- direction
% C
% DATA DXL/20.D0/
DXL = 20;
% C
% C
persistent G RC D0 DD HA02 ADR DEL DT GAM SX
persistent HXLD2M HXLW2M P Q DBLDEL AT
persistent RDYC2 HLWC2M DRDYC2 DX SXA SYA SZA
persistent W1 W2 W3 W4 W5 W6
persistent AK1 AK2 AK3 AK4 AK5
persistent AK6 AK7 AK8 AK9 AK10
persistent AK11 AK12 AK13 AK14 AK15
persistent AK16 AK17 AK610 AK711 AK812 AK913
if (ID==1),
for I=1:30,
% DO 2 I = 1, 30
for L=1:3,
% DO 1 L = 1, 3
DER(L,I) = 0.0D0;
end
end % 2 CONTINUE
% C
DYC=A(30);
DYC2=DYC^2;
DX=A(18);
HA02=0.5D0*A02;
RDX2M=-1.D0/DX^2;
RDX2=-RDX2M;
RDYC2=1.D0/DYC2;
HLWC2M=-0.5D0*XLWC2;
DRDYC2=-2.D0*RDYC2;
DRDYC3=2.D0*RDYC2*sqrt(RDYC2);
HXLW2M=-0.5D0*XLW2;
ADR=A(19);
D0=A(20);
DD=A(21);
RC=A(22);
G=A(23);
AT=A(24);
DT=D0;
DEL=A(26);
P=A(25);
Q=A(27);
SX=A(28);
GAM=A(29);
HXLD2M=-0.5D0*XLD2;
ADSL=0.D0;
XGHS=0.D0;
H=0.D0;
HS=0.D0;
GAMH=0.D0;
W1=-0.5D0/DX;
DBLDEL=2.D0*DEL;
W2=W1*2.D0;
W4=-1.D0/3.D0;
W3=W4/DX;
W5=-0.5D0;
W6=-3.D0;
AK1=A(1);
AK2=A(2);
AK3=A(3);
AK4=A(4);
AK5=A(5);
AK6=A(6);
AK7=A(7);
AK8=A(8);
AK9=A(9);
AK10=A(10);
AK11=A(11);
AK12=A(12);
AK13=A(13);
AK14=A(14);
AK15=A(15);
AK16=A(16);
AK17=A(17);
SXA=0.D0;
SYA=0.D0;
SZA=0.D0;
AK610=AK6*W1+AK10*W5;
AK711=AK7*W2-AK11;
AK812=AK8*W2+AK12*W6;
AK913=AK9*W3+AK13*W4;
RDXL=1.D0/DXL;
HRDXL=0.5D0*RDXL;
A6H=AK6*0.5D0;
A9T=AK9/3.D0;
YNP=RPI/YN*0.5D0;
YND=2.D0*YN;
% C
end% 3 CONTINUE
% C
X = XI(1);
Y = XI(2);
Z = XI(3);
TILT=XI(4);
TLT2=TILT^2;
SPS = sin(TILT);
CPS = sqrt (1.0D0 - SPS ^ 2);
% C
X2=X*X;
Y2=Y*Y;
Z2=Z*Z;
TPS=SPS/CPS;
HTP=TPS*0.5D0;
GSP=G*SPS;
XSM=X*CPS-Z*SPS;
ZSM=X*SPS+Z*CPS;
% C
% C CALCULATE THE FUNCTION ZS DEFINING THE SHAPE OF THE TAIL CURRENT SHEET
% C AND ITS SPATIAL DERIVATIVES:
% C
XRC=XSM+RC;
XRC16=XRC^2+16.D0;
SXRC=sqrt(XRC16);
Y4=Y2*Y2;
Y410=Y4+1.D4;
SY4=SPS/Y410;
GSY4=G*SY4;
ZS1=HTP*(XRC-SXRC);
DZSX=-ZS1/SXRC;
ZS=ZS1-GSY4*Y4;
D2ZSGY=-SY4/Y410*4.D4*Y2*Y;
DZSY=G*D2ZSGY;
% C
% C CALCULATE THE COMPONENTS OF THE RING CURRENT CONTRIBUTION:
% C
XSM2=XSM^2;
DSQT=sqrt(XSM2+A02);
FA0=0.5D0*(1.D0+XSM/DSQT);
DDR=D0+DD*FA0;
DFA0=HA02/DSQT^3;
ZR=ZSM-ZS;
TR=sqrt(ZR^2+DDR^2);
RTR=1.D0/TR;
RO2=XSM2+Y2;
ADRT=ADR+TR;
ADRT2=ADRT^2;
FK=1.D0/(ADRT2+RO2);
DSFC=sqrt(FK);
FC=FK^2*DSFC;
FACXY=3.0D0*ADRT*FC*RTR;
XZR=XSM*ZR;
YZR=Y*ZR;
DBXDP=FACXY*XZR;
DER(2,5)=FACXY*YZR;
XZYZ=XSM*DZSX+Y*DZSY;
FAQ=ZR*XZYZ-DDR*DD*DFA0*XSM;
DBZDP=FC*(2.D0*ADRT2-RO2)+FACXY*FAQ;
DER(1,5)=DBXDP*CPS+DBZDP*SPS;
DER(3,5)=DBZDP*CPS-DBXDP*SPS;
% C
% C CALCULATE THE TAIL CURRENT SHEET CONTRIBUTION:
% C
DELY2=DEL*Y2;
D=DT+DELY2;
if (abs(GAM)>=1.D-6),
XXD=XSM-XD;
RQD=1.D0/(XXD^2+XLD2);
RQDS=sqrt(RQD);
H=0.5D0*(1.D0+XXD*RQDS);
HS=-HXLD2M*RQD*RQDS;
GAMH=GAM*H;
D=D+GAMH;
XGHS=XSM*GAM*HS;
ADSL=-D*XGHS;
end
D2=D^2;
T=sqrt(ZR^2+D2);
XSMX=XSM-SX;
RDSQ2=1.D0/(XSMX^2+XLW2);
RDSQ=sqrt(RDSQ2);
V=0.5D0*(1.D0-XSMX*RDSQ);
DVX=HXLW2M*RDSQ*RDSQ2;
OM=sqrt(sqrt(XSM2+16.D0)-XSM);
OMS=-OM/(OM*OM+XSM)*0.5D0;
RDY=1.D0/(P+Q*OM);
OMSV=OMS*V;
RDY2=RDY^2;
FY=1.D0/(1.D0+Y2*RDY2);
W=V*FY;
YFY1=2.D0*FY*Y2*RDY2;
FYPR=YFY1*RDY;
FYDY=FYPR*FY;
DWX=DVX*FY+FYDY*Q*OMSV;
YDWY=-V*YFY1*FY;
DDY=DBLDEL*Y;
ATT=AT+T;
S1=sqrt(ATT^2+RO2);
F5=1.D0/S1;
F7=1.D0/(S1+ATT);
F1=F5*F7;
F3=F5^3;
F9=ATT*F3;
FS=ZR*XZYZ-D*Y*DDY+ADSL;
XDWX=XSM*DWX+YDWY;
RTT=1.D0/T;
WT=W*RTT;
BRRZ1=WT*F1;
BRRZ2=WT*F3;
DBXC1=BRRZ1*XZR;
DBXC2=BRRZ2*XZR;
DER(2,1)=BRRZ1*YZR;
DER(2,2)=BRRZ2*YZR;
DER(2,16)=DER(2,1)*TLT2;
DER(2,17)=DER(2,2)*TLT2;
WTFS=WT*FS;
DBZC1=W*F5+XDWX*F7+WTFS*F1;
DBZC2=W*F9+XDWX*F1+WTFS*F3;
DER(1,1)=DBXC1*CPS+DBZC1*SPS;
DER(1,2)=DBXC2*CPS+DBZC2*SPS;
DER(3,1)=DBZC1*CPS-DBXC1*SPS;
DER(3,2)=DBZC2*CPS-DBXC2*SPS;
DER(1,16)=DER(1,1)*TLT2;
DER(1,17)=DER(1,2)*TLT2;
DER(3,16)=DER(3,1)*TLT2;
DER(3,17)=DER(3,2)*TLT2;
% C
% C CALCULATE CONTRIBUTION FROM THE CLOSURE CURRENTS
% C
ZPL=Z+RT;
ZMN=Z-RT;
ROGSM2=X2+Y2;
SPL=sqrt(ZPL^2+ROGSM2);
SMN=sqrt(ZMN^2+ROGSM2);
XSXC=X-SXC;
RQC2=1.D0/(XSXC^2+XLWC2);
RQC=sqrt(RQC2);
FYC=1.D0/(1.D0+Y2*RDYC2);
WC=0.5D0*(1.D0-XSXC*RQC)*FYC;
DWCX=HLWC2M*RQC2*RQC*FYC;
DWCY=DRDYC2*WC*FYC*Y;
SZRP=1.D0/(SPL+ZPL);
SZRM=1.D0/(SMN-ZMN);
XYWC=X*DWCX+Y*DWCY;
WCSP=WC/SPL;
WCSM=WC/SMN;
FXYP=WCSP*SZRP;
FXYM=WCSM*SZRM;
FXPL=X*FXYP;
FXMN=-X*FXYM;
FYPL=Y*FXYP;
FYMN=-Y*FXYM;
FZPL=WCSP+XYWC*SZRP;
FZMN=WCSM+XYWC*SZRM;
DER(1,3)=FXPL+FXMN;
DER(1,4)=(FXPL-FXMN)*SPS;
DER(2,3)=FYPL+FYMN;
DER(2,4)=(FYPL-FYMN)*SPS;
DER(3,3)=FZPL+FZMN;
DER(3,4)=(FZPL-FZMN)*SPS;
% C
% C NOW CALCULATE CONTRIBUTION FROM CHAPMAN-FERRARO SOURCES + ALL OTHER
% C
EX=exp(X/DX);
EC=EX*CPS;
ES=EX*SPS;
ECZ=EC*Z;
ESZ=ES*Z;
ESZY2=ESZ*Y2;
ESZZ2=ESZ*Z2;
ECZ2=ECZ*Z;
ESY=ES*Y;
% C
DER(1,6)=ECZ;
DER(1,7)=ES;
DER(1,8)=ESY*Y;
DER(1,9)=ESZ*Z;
DER(2,10)=ECZ*Y;
DER(2,11)=ESY;
DER(2,12)=ESY*Y2;
DER(2,13)=ESY*Z2;
DER(3,14)=EC;
DER(3,15)=EC*Y2;
DER(3,6)=ECZ2*W1;
DER(3,10)=ECZ2*W5;
DER(3,7)=ESZ*W2;
DER(3,11)=-ESZ;
DER(3,8)=ESZY2*W2;
DER(3,12)=ESZY2*W6;
DER(3,9)=ESZZ2*W3;
DER(3,13)=ESZZ2*W4;
% C
% C FINALLY, CALCULATE NET EXTERNAL MAGNETIC FIELD COMPONENTS,
% C BUT FIRST OF ALL THOSE FOR C.-F. FIELD:
% C
SX1=AK6*DER(1,6)+AK7*DER(1,7)+AK8*DER(1,8)+AK9*DER(1,9);
SY1=AK10*DER(2,10)+AK11*DER(2,11)+AK12*DER(2,12)+AK13*DER(2,13);
SZ1=AK14*DER(3,14)+AK15*DER(3,15)+AK610*ECZ2+AK711*ESZ+AK812 ...
*ESZY2+AK913*ESZZ2;
BXCL=AK3*DER(1,3)+AK4*DER(1,4);
BYCL=AK3*DER(2,3)+AK4*DER(2,4);
BZCL=AK3*DER(3,3)+AK4*DER(3,4);
BXT=AK1*DER(1,1)+AK2*DER(1,2)+BXCL +AK16*DER(1,16)+AK17*DER(1,17);
BYT=AK1*DER(2,1)+AK2*DER(2,2)+BYCL +AK16*DER(2,16)+AK17*DER(2,17);
BZT=AK1*DER(3,1)+AK2*DER(3,2)+BZCL +AK16*DER(3,16)+AK17*DER(3,17);
F(1)=BXT+AK5*DER(1,5)+SX1+SXA;
F(2)=BYT+AK5*DER(2,5)+SY1+SYA;
F(3)=BZT+AK5*DER(3,5)+SZ1+SZA;
% C
% end of function T89
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%