Latex Equation Compiler Code
Brought to you by:
jrheinlaender
÷À; è TeX output 2012.12.29:1852 ÿÿÿÿïheader=pstricks.proïheader=pst-algparser.proïheader=pst-dots.pro ¹ðü ý;9ègiïcolor push gray 0þñï color pop ¦Æsègi ýr9ïcolor push gray 0<~ ßNïcolor push gray 0ï color pop ¿JóÆîê ½q ½q ecrm2074»TþfKourdofEQCfunctionalitÿwmy(æ Ö±¸ó& ff ff ecrm1440¼JanRheinländer!\ Ï]Decemnbaer29,2012:4ós©^d G® G® ecbx1728ÆConÿ{ktentsaeó¥!¢N ecbx1200Ç1æNumeric¸evÿ@alutionofequations?a2¤?D2æWþàorking¸withph ysicalquantities4È3¡3æUser¸denedfunctionssD"4¡4æAsking¸forvÿ@aluesofvariablesJ5¡5æSym b_úolic¸computationsn%Ü7¤ æóÓ·å ecrm1200º5.1,£Example:êlSolvingaquadraticequationlÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ëÍïcolor push gray 07Ëoï color pop¡æ5.2,£Example:êlFindingtheextremaofafunctionËÌÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ëÍïcolor push gray 09Ëoï color pop¡æ5.3,£Libraryêlofsubstititions+ÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 010Ëoï color pop¤?DÇ6æMatrices½>10¡7æGraphsÅàa11¡8æUtilit y¸functionsÓÁ14¡9æPitfallsÇ'i14¤ æº9.1,£UnexpSectedêlnewlinesj1ÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 014Ëoï color pop¡æ9.2,£MultipleêlpSossiblevÿXíaluesforequationsÑÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 015Ëoï color pop¡æ9.3,£Multipleêlsubstitutions¬~ÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 016Ëoï color pop¡æ9.4,£Outputêlofn¬wumbSersõAÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 016Ëoï color pop¡æ9.5,£Libraryêlequations]ÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 016Ëoï color pop¡æ9.6,£Pstric¬wksêlheadachesoÿý. CSÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.ÿý.+ïcolor push gray 017Ëoï color pop ègiïcolor push gray 0¨1þñï color pop * ¹ðü ý;9ègiïcolor push gray 0ó-]Kdï ecsl1200Ø1¿DNUMERICêlEVþ±ÜALUTIONOFEQUAÿeTIONS&æº2þñï color pop ¦Æs ý~9ègiÆ1^
Numeric6êevþöØalutionofequationsÏègiºEQCJjaddsJthepSo¬wwerJofJaspreadsheettoLatex.KItispSossibletowritedo¬wwnequationsandobtainthe¤ ègin¬wumericalêlvÿXíalueofvariables:Èòâmïcolor push gray 0ï color popègió+D7`± ectt1200Ö$$\eq{x,j=3}$$¡ègi$$\eq{y,j=4}$$¡ègi$$\eq{z,j=\sqrt{x^2+y^2}}=\val{z}$$©Èñ â9%ó·ág£ cmmi12ÊxURóX«Q cmr12¹=3¤m¦ â{^Êyù=UR4¡ ÂBÊzÞ5¹=URõxó%ú±u
cmex10ÐpUTõx zà $Ï
ýÊxüó|{Y cmr8È2j¬¹+ª¨Êyn9üÈ27y·¹=UR5ÛLègiºIfêly¬wouonlywanttodoanumericalcalculationinyourtext,usingtheó"!",
cmsy10ÍnÇvÿ@alºkeywordissucient.¦âmïcolor push gray 0ï color popègiÖThe,jsquarerootoftwois\val{\sqrt{2}}.ÈòègiºTheêlsquareroSotoft¬wwoêlis1.414.í¦ègiEquationsêlcanbSeassignedalabeltoreusethemlateron:©g`âmïcolor push gray 0ï color popègiÖ\begin{equation}¤ ègi\eq[eq:important]{a,j=x+2}¡ègi\end{equation}¡ègi\centerline{\emph{Equation,j\ref{eq:important}definesthevalueofa¡ègito,jbe$\printeq{"eq:important"}=\val{a}$.}}¦¡ ×ç8ÊaUR¹=Êxª¨¹+2éc¼º(1)m¦fºó,ë¡ ecti1200×Equation2ð1denesthevalueofatobÿfpeÊaUR¹=Êxª¨¹+2UR=5×.í¦ègiºIfÑÃy¬wouÑÂwanttouseÑÂmathematicalorphysicalÑÂconstantsinyourÑÂequations,ÒdenethemwiththeÍnÇconstan t¡ègiºk¬weyword.êlThelemathconstan¬wts.texcontainsdenitionsforthemostcommonconstantsÊX¥ºandÊeº.¦âmïcolor push gray 0ï color popègiÖ$$\constant{\Pi,j=3.141}$$¡ègi$$\eq{r,j=3}$$¡ègi$$\eq{d,j=2\Pir}=\val{d}$$¦¡ Ö¶¹UR=3Ê:¹141¤m¦ âÀAÊr¨à¹=UR3¡ ÆxÊdUR¹=2Êr¨à¹=18Ê:¹85ÛLègiºEquations¤mcan¤ntak¬weanoptionallistofoptions,¤Áforexample,Ö\eq[label=eq:x;,jeqraw=false]{x=y^2}º. ègiTheêloptionswillapplyonlytothisspSecicequation.Someofthea¬wvÿXíailableoptionsare: ègiïcolor push gray 0þñï color pop t ¹ðü ý;9ègiïcolor push gray 0Ø2¿DW¬wORKINGêlWITHPHYSICALQUANTITIES¸àº3þñï color pop ¦Æs ý~9âmïcolor push gray 0ßüÇunits¸={unit;unit;...}ï color popxQ÷ºTÿeellêlEQCwhatunitsitshoulduseintheoutput.©zâmïcolor push gray 0ßüÇprecision¸=in tegerï color pop^µSºThe?¤precision(total?¥n¬wumbSer?¤ofdigits)withwhic¬whoatingpSoin¬wtnumbSersare¤ ÇUprin¬wted.zâmïcolor push gray 0ßüÇxeddigits¸=true|falseï color poptsºYÿeouwScandecidewhetherwTy¬wouwanttoroundallnumbSerstowTaxednumbSerof¡ÇUdigits@;(e.g.,@Q12345rounded@<toaprecisionofthreew¬wouldbSe12300)orwhethertodispla¬wyaxed¡ÇUn¬wumbSerêlofdigitsafterthedecimalmark¬wer.¦âmïcolor push gray 0ßüÇlo wsclimit¸=realï color popR°ÁºItâ>ispSossibletocon¬wtrolwhichâ?numbSersareprintedinscienticnotation(e.g.,¡ÇU¹1Ê:¹23ÿþÍUR¹10û¥2È5Àº).êlThisoptionsgiv¬wethesmallestnumbSerthatisstillprintednormallyÿe.zâmïcolor push gray 0ßüÇhighsclimit¸=realï color popXPgºThisêloptionsgiv¬wethelargestnumbSerthatisstillprintednormallyÿe.¦âmïcolor push gray 0ßüÇeqalign¸=none|eqnarra y|amsï color pop ¥ºThisÕ8optioncon¬wtrolsequationÕ9formatting.ÖàÖnoneºprintsnoampSersands,¡ÇUÖeqnarray¨ºprin¬wtsampSersandsonbothsidesoftheequalssign(Ö&=&º),»andÖamsºprin¬wtsanampersand¡ÇUbSefore>the=equalssign(Ö&=º).4Bydefault,gEQCautomaticallyaddsampersandsto=y¬wourequations¡ÇUdepSendingêlontheen¬wvironmentêltheyappearin.zâmïcolor push gray 0ßüÇeqc hain¸=true|falseï color popdpºOmitsÓ\thelefthandsideÓ[ofanequationifitisiden¬wticaltothelefthandsideof¡ÇUtheêlequationdirectlyprecedingitinanÖeqnarrayºorAMSen¬wvironment.¦âmïcolor push gray 0ßüÇeqra w¸=true|falseï color popZºPrin¬wtêlequationsasyoutypSedthem(ifpossible),orwithEQCformatting.gbègiTheêlk¬weywordÍnÇeqcoptionsºcanbSeusedtosettheseoptionsgloballyÿe.- ,ègiÆ2^
WþrDorking6êwithphÿ{kysicalquantitiesY0ègiºEQCüÓaddsüÙtheüØclassUnittothefunctionalit¬wyoftheGiNaCüÓlibraryÿe.üõThismeansthatyouüÙcanuseunits¡ègiinêlanaturalw¬wayêlinsideequations: aéâmïcolor push gray 0ï color popègiÖ\clearequations¡ègi\eqcoptions{units,j={\mm}}¡ègi$$\eq{x,j=\unit{3}{\mm}}$$¡ègi$$\eq{y,j=\unit{4}{\mm}}$$¡ègi$$\eq{z,j=x+y}=\quantity{z}$$ aê¡ ÖÃØÊxUR¹=3mm¤÷Ë ×Êyù=UR4mm¡ ÀÍÊzÞ5¹=URÊxª¨¹+Êyù=7UPmmïègiºUpSon³ startup,³}EQC²kno¬wwsonlythe³baseSIunits.µÆTÿeo³getfullsuppSortforallunitsdenedinthe¤ ègiSIunits.st¬wy¼CpackÿXíage,¼ºincludeunits.tex¼DatthebSeginningofyourdoScument.¿New¼DunitscaneasilybSe¡ègidenedêlusingtheÍnÇdefunitºk¬weyword.êlFÿeorexample: ègiïcolor push gray 0þñï color pop » ¹ðü ý;9ègiïcolor push gray 0Ø3¿DUSERêlDEFINEDFUNCTIONSS׺4þñï color pop ¦Æs ý~9âmïcolor push gray 0ï color popègiÖ\defunit['']{\inch}{2.54\mm}¤ ègi\eqcoptions{units,j={\inch}}¡ègi$$z,j=x+y=\quantity{z}$$© ¡ ½WxÊzÞ5¹=URÊxª¨¹+Êyù=2Ê:¹756UPûó#¾KÈ cmsy8Î00 ègiºTheoptionÖunitsºtellsEQCwhatunitsitshoulduseintheoutput.pIfnounitsaregiv¬wen,"EQCwilluse¡ègitheDäSIDÍbaseDåunits.EoTheunitscanalsobSegiv¬wenasanoptionalargumen¬wttotheÍnÇvÿ@alºk¬weyword(andDäwill¡ègionlyêlapplytothatspSecicvÿXíalue):¦âmïcolor push gray 0ï color popègiÖ\defunit['']{\inch}{2.54\mm}¡ègi\eqcoptions{units,j={\inch}}¡ègi$$z,j=x+y=\quantity{z}=\quantity[units={\mm}]{z}$$¦¡ ¦ÊzÞ5¹=URÊxª¨¹+Êyù=2Ê:¹756UPûÎ00+ßâ¹=7UPmm ègiºAêlshortformalsoexists,withthesyn¬wtaxÖ\quantity[\mm]{z}º.© ègiNoteêlthattherearefourdieren¬wtkeywordsthatcanbSeusedforndingthevÿXíalueofavariable: âmïcolor push gray 0ßüÇn umvÿ@alï color poptºThisêlprin¬wtsanumericvÿXíalue,orprintsanerrorifthevÿXíariabledoSesnothaveone.¤ âmïcolor push gray 0ßüÇunitsï color popúPrin¬wtsêlonlytheunitsofthevÿXíariable.¡âmïcolor push gray 0ßüÇquan tityï color popPºPrin¬wtsêlanumericvÿXíalueplusunits(ifthereareany).¡âmïcolor push gray 0ßüÇvÿ@alï color popþöZºPrin¬wtsêlanykindofsymbSolicexpression-4ègiÆ3^
User6êdenedfunctionsaeègiºEQCqnextendsqGiNaCqmb¬wyqoeringuser-denedfunctionswhic¬whcanbSecreatedatrun¬wtimeintheLatex¤ ègile.ÎAVfunctionisdeclaredusingtheÍnÇfunctionºk¬weyword.AVdenitionforthefunctionma¬wybSegiv¬wenwith¡ègiÍnÇdeuncº,Cbut/thisisnotstrictlynecessaryÿe.©Ofcourse,onlyfunctionswithdenitionscanbSeevÿXíaluated!¦ègiFÿeunctionsL*canbSeL+giv¬wenhintsFÅwhentheyL+aredenedusingthesyn¬wtaxÖ\function[hintlist]...º.MHints¡ègienableöEQCátohandle÷andprin¬wtfunctionsbSetter.vFÿeorexample,thehintÖtrigºwillresult÷inthefunction¡ègibSeingêlprin¬wtedas¹sinWû3ÎÈ2Êxºinsteadof¹(sinm(Êx¹))û¥2È2Àº.¦ègiConsiderêlthefunction© âmïcolor push gray 0ï color popègiÖ\function{f}{x}¡ègi$$\deffunc{f}{ax^2,j+bx+c}$$¦ ÅTÊfQ¹=URÊaxûÈ2j¬¹+ª¨Êbx¹+Êc ègiïcolor push gray 0þñï color pop ) ¹ðü ý;9ègiïcolor push gray 0Ø4¿DASKINGêlF¬wORVþ±ÜALUESOFVARIABLES
÷º5þñï color pop ¦Æs ý~9âmïcolor push gray 0ï color popègiÖWith,j$\eq{a=4}$,$\eq{b=-2}$and$\eq{c=7}$wecancompute$f(x)$for$x=3$:¤ ègi$$f(x),j=\val{f(x)}$$¡ègi$$f(3),j=\val{f(3)}=\numval{\val{f(3)}}$$ègiºWithêlÊaUR¹=4º,Êb¹=Í ¹2ºandÊc¹=7ºw¬wecancomputeÊfGÿ¹(Êx¹)ºforÊx¹=3º:¤íÞ º ÊfGÿ¹(Êx¹)UR=7ª¨+4ÿþÊxûÈ2j¬Í ¹2Êx¡ ±8fGÿ¹(3)UR=Êcª¨¹+3ÿþÊb¹+9ÊaUR¹=37S¨ègiºNoteÚ©whatÚ¨eecttheÍnÇvÿ@alºstatemen¬wthasonthedieren¬wtparameters.ÚÁTÿeobSothexpandthefunctionand¤ ègisubstituteêlthevÿXíaluesofkno¬wwnvariables,adoubleÍnÇvÿ@alºstatemen¬wtisnecessaryÿe.,,ègiÆ4^
Asking6êforvþöØaluesofvariablesµ
ègiºMostadoScumen¬wtsawillbeofathet¬wypethatadenean¬wumberaofaequationsandthentrytocalculaten¬wumeric¡ègivÿXíaluesêlforthevariablesusedintheseequations.Therearesev¬weralmethoSdsofdoingthisecienctly:zùègiïcolor push gray 0ïÍðï color popÇUºThe¹òmost¹ñstraigh¬wt-forwardway¹ñistodeneanequationandthenotherequationsthatgiv¬wethe¡ÇUkno¬wwn&vÿXíalues'ofvariables.jTheÍnÇvÿ@alºstatemen¬wt'canthenbSeusedtocalculatedthevÿXíaluesofunk¬wown¡ÇUvÿXíariables.©íÞçYïcolor push gray 0ï color popÇUÖ\begin{eqnarray*}¡xý\eq{x,j=3y+4}\\¡xý\eq{y,j=5}\\¡xýx,j&=&\numval{x}¡ )\end{eqnarray*}&[¼ ÜýÊx íªå¹= Îm3Êyá¹+ª¨4¤ ÝÊy íªå¹= Îm5¡ ÜýÊx íªå¹= Îm19íÞÇUºThis±ÏmethoSdbecomesa¬wwkward±Ïify¬wouwant±ÐtoaskforthevÿXíalueofÊxºagain,±ÞusingadierentvÿXíalue¤ ÇUforêlÊyn9º.Yÿeouw¬wouldhavetodeletetheequationdeningÊyX¥ºandcreateanewone.
ègiïcolor push gray 0ïÍðï color popÇUºIf?ey¬wou?fneedthevÿXíalueofavÿXíariableforman¬wydierent?eparameters,?¼thebSestw¬way?eistodenea¡ÇUfunction.¦çYïcolor push gray 0ï color popÇUÖ\clearequations¡ÇU\begin{eqnarray*}¡ )\function{x}{y}%¡ )\deffunc{x}{3y+4}\\¡ )x,j&=&\val{x(5)}\\¡ )x,j&=&\val{x(7)}\\¡ÇU\end{eqnarray*} ègiïcolor push gray 0þñï color pop 4T ¹ðü ý;9ègiïcolor push gray 0Ø4¿DASKINGêlF¬wORVþ±ÜALUESOFVARIABLES
÷º6þñï color pop ¦Æs ý~9© ÜýÊx íªå¹= Îm3Êyá¹+ª¨4¤ ÜýÊx íªå¹= Îm19¡ ÜýÊx íªå¹= Îm25¡¦ÇUºThe{onlyzdra¬wwbackisthatyouzcannoteasilysubstitutethedenitionÊxƹ=Å3Êy6C¹+È
4ºin¬wtoother¤ ÇUequations.êlYÿeouw¬wouldhavetodosomethinglikeÖ\eqsubst{z,j=3x}{x=\val{x}}º. ègiïcolor push gray 0ïÍðï color popÇUºTheêllastw¬wayêlistousetheÖwithº-formoftheÍnÇvÿ@alºstatemen¬wt. çYïcolor push gray 0ï color popÇUÖ\clearequations%¡ÇU\begin{eqnarray*}¡ )\eq{x,j=3y+4}\\¡ )x,j&=&\numvalwith{x}{y=5}\\¡ )x,j&=&\numvalwith{x}{y=7}\\¡ÇU\end{eqnarray*}) ÜýÊx íªå¹= Îm3Êyá¹+ª¨4¤ ÜýÊx íªå¹= Îm19¡ ÜýÊx íªå¹= Îm25¡¦ÇUºAllÈtheassignmen¬wtsgivenasÉthesecondargumentaredenedasequations,thesearchforthe¤ ÇUvÿXíalueispSerformed,$andthenthetemporaryequationsaredeletedagain.eTherefore,$y¬woucannd¡ÇUev¬wenêlvÿXíaluesofvariablesthatareindirectlydened:© çYïcolor push gray 0ï color popÇUÖ\clearequations¡ÇU\begin{eqnarray*}¡ )\eq{x,j=3y+4}\\¡ )\eq{z,j=4x}\\¡ )z,j&=&\numvalwith{z}{y=5}\\¡ÇU\end{eqnarray*}¦ ÜýÊx íªå¹= Îm3Êyá¹+ª¨4¤ ݬ°Êz íªå¹= Îm4Êx¡ ݬ°z íªå¹= Îm76¡ ègiïcolor push gray 0þñï color pop >. ¹ðü ý;9ègiïcolor push gray 0Ø5¿DSYMBOLICêlCOMPUTÿeATIONSSDº7þñï color pop ¦Æs ý~9ègiÆ5^
Symÿ{kb olic6êcomputationsaeègiºEQCoersthepSossibilit¬wyofsymbSolicmanipulationofequations.ûYÿeoucanuseittoadd,ësubtract,¤ ègim¬wultiply
?or
@divideanequationwithanexpression.
pAlso,
HitispSossibletosubstituteanexpressionwith¡ègianotherêlexpression,andtodieren¬wtiateanexpression.'Éègió.&Lt$ ff ff ecbx1440Ù5.1y¯Example:G\Solvingaquadraticequation?ègiºConsiderêltheequation© âmïcolor push gray 0ï color popègiÖ\clearequations¡ègi\function{f}{x}¡ègi$$\deffunc{f}{ax^2,j+bx+c}=0$$¦ º|ûÊfQ¹=URÊaxûÈ2j¬¹+ª¨Êbx¹+Êc¹=0 ègiºWhatêlvÿXíaluesofxwillsolv¬wethisequation? ègiWÿee·needto·bringtheequationin¬wtotheformÊxû¥2È2¤_¹+ä[2ÊAx¹+ÊAû¥2È2%¹=eÊB º,·whic¬wh·canthenbSewrittenas¡ègi¹(Êxª¨¹+ÊA¹)û¥2È2V¹=URÊB
rºandêlsolv¬wed. âmïcolor push gray 0ï color popègiÖ$$\eqdiv{\val{f(x)},j=0}{a},a\ne0$$¡ègi$$\eqadd{"prev"}{(1/2,jb/a)^2-c/a}$$¡ègi$$\eqsimpf{"prev"}{expand}$$%v÷áÅ ¨ï¹1 ¨É[« zà +
ýÎÊa ´'½öG©Ð ¹§¿Êcª¨¹+ÊaÿþxûÈ2j¬¹+ÊbxöG©ÐÁá¹=UR0Ê;ÿþaÍ6¹=0¤!\÷áÅ ] 1 7[« zà +
ýÎÊa ÍöG©Ð ÏÊcª¨¹+ÊaÿþxûÈ2j¬¹+ÊbxöG©Ð ä
G¹+÷áÅÝÛ1ÝÛ[« zà ßü
ýÎ4÷áźIÊbû¥2È2$=[« zà
ë
ýÎÊaüÈ2íÍ ÷áÅlÊcÝÛ[« zà +
ýÎaa¹=÷áÅ
1
[« zà ßü
ýÎ4÷áÅ
dóÊbû¥2È2Îç[« zà
ë
ýÎÊaüÈ2ÇÍ ÷áÅlÊcÝÛ[« zà +
ýÎa¡ «%xûÈ2j¬¹+÷áÅÝÛ1ÝÛ[« zà ßü
ýÎ4÷áźIÊbû¥2È2$=[« zà
ë
ýÎÊaüÈ2í¹+÷áÅÝÛÊbÿþxÝÛ[« zà
¬:
ýÎÀa¹=÷áÅ
1
[« zà ßü
ýÎ4÷áÅ
dóÊbû¥2È2Îç[« zà
ë
ýÎÊaüÈ2ÇÍ ÷áÅlÊcÝÛ[« zà +
ýÎaþþègiºThe³`spSecialequationlabelÖ"prev"ºisashortcuttoaccessthelastequationprocessedb¬wyEQC.With ègiÍnÇeqsimpfêlºitispSossibletodoavÿXíariet¬wyofsimplicationsontheequation:¦âmïcolor push gray 0ßüÇexpandï color pop¢ºFÿeullyêlexpandsallexpressions,includingfunctionargumen¬wts.¤ âmïcolor push gray 0ßüÇexpandfï color pop½`ºOnlyêlexpandfunctiondenition,notargumen¬wts.¡âmïcolor push gray 0ßüÇevÿ@alï color popÚºNumericallyêlevÿXíaluatetheequationasfaraspSossible.¡âmïcolor push gray 0ßüÇnormalï color pop]ºNormalize#theequation,#Ãthatis,#Âforceall#termstoha¬wve#acommondenominator(seedescription© ÇUofêlGiNaC'sÖnormal()ºmethoSdfordetails).¡âmïcolor push gray 0ßüÇcollect-commonï color popIêºCollectuÄcommonfactorsfromalltermsuÅoftheequation(seedescriptionofGiNaC's¦ÇUÖcollect_common_factors()êlºmethoSdfordetails). ègiïcolor push gray 0þñï color pop DË ¹ðü ý;9ègiïcolor push gray 0Ø5¿DSYMBOLICêlCOMPUTÿeATIONSSDº8þñï color pop ¦Æs ý~9âmïcolor push gray 0ßüÇunsafeï color popq(ºDo kunsafe jsimplications, qforexample,õ ÿÍp sõ ÿ zà mV
_ÊxüÈ2è¹=zÄÊx kºand¹arctan&£átan9·Êx¹=Êxº. Notethat jtheoppSosite,© ÇU¹tanÀ+arctan;c¡Êxº,êlisnotunsafeandth¬wusisdoneautomatically(byGiNaC). ègiAsêlcanbSeseen,ÊAUR¹=ûFu
È1
öû zà @åê2ûFuió ×2 cmmi8Ëb.ïöû zà ÏåêaÐ]ºandÊBðX¹=(ûFu33È133öû zà @åê2ûFuJËbÙöû zà Ïåêa
¹)û¥2È2j¬Í ûFuHËcÝÛöû zà Ïåêa ݺ.Theequationcanno¬wwbSewrittenas:¤ âmïcolor push gray 0ï color popègiÖ$$\eq{\left(x,j+\frac{1}{2}\frac{b}{a}\right)^2=\rhs{"prev"}}$$)÷áÅ °$¹1 °$Â[« zà ßü
ýÎ4 ¹7ïïqÐ÷áÅ ÃÖÊb Ã@z[« zà +
ýÎa ÍIV¹+ª¨2ÿþÊxïqÐ ðz*ñÄ<È2 ø¹=÷áÅ
1
[« zà ßü
ýÎ4÷áÅ
dóÊbû¥2È2Îç[« zà
ë
ýÎÊaüÈ2ÇÍ ÷áÅlÊcÝÛ[« zà +
ýÎa *0ègiºApplyingêlthesquareroSottobothsidesyieldsthet¬wwoêlsolutions:¡âmïcolor push gray 0ï color popègiÖ$$\eqpow{"prev"}{1/2}$$¦ègi$$\eqsimpf[eq:poss1]{"prev"}{unsafe}$$¦ègi$$\mbox{or}\quad\eq[eq:poss2]{\lhs{"prev"},j=-\rhs{"prev"}}$$¡´÷áÅ ¤$À¹1 ¤$À[« zà ßü
ýÎ2 7íé\Ðs ¹7ïé\ zà <?£ôïq÷áÅ
Êb
[« zà +
ýÎag¹+ª¨2ÿþÊxïqÐ7B;ñÄ<È2 ø¹=URì³ÐrUTì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa(£ë ¹Jxª¨¹+÷áÅcäÊbÝÛ[« zà
û
ýι2ÿþÊaq[¹=URì³ÐrUTì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa$Ç¿ ©:ºor ¿·Êxª¨¹+÷áÅcäÊbÝÛ[« zà
û
ýι2ÿþÊaq[¹=URÍ ì³Ðr ì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎaÈ×ègiºTheêlt¬wwopSossiblevÿXíaluesforÊxºaretherefore: âmïcolor push gray 0ï color popègiÖ\eqsubst*[eq:temp1]{"eq:poss1"}{x,j=x_1}¦ègi\eqsubst*[eq:temp2]{"eq:poss2"}{x,j=x_2}¡âmïcolor push gray 0ï color popègi$$\eqsub[eq:sol1]{"eq:temp1"}{\frac{b}{2a}}$$¦ègi$$\eqsub[eq:sol2]{"eq:temp2"}{\frac{b}{2a}}$$)í( ¶Ñ.ÊxÌÌÈ1V¹=URì³ÐrUTì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa>Ó×Í ÷áÅcäÊbÝÛ[« zà
û
ýι2ÿþÊa$Ç¿ ²&xÌÌÈ2V¹=URÍ ÷áŹ<Êb33[« zà
û
ýι2ÿþÊa Í ª¨ì³Ðrªªì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa
ègiºAêlfasterw¬wayêltoac¬whieveêlthesameresultisb¬wyusingÍnÇeqsolv eº. âmïcolor push gray 0ï color popègiÖ$$\eqsubst{\eqsolve{f(x),j=0}{x}{1}}{x=x_1}$$¦ègi$$\eqsubst{\eqsolve{f(x),j=0}{x}{2}}{x=x_2}$$ ègiïcolor push gray 0þñï color pop Q ¹ðü ý;9ègiïcolor push gray 0Ø5¿DSYMBOLICêlCOMPUTÿeATIONSSDº9þñï color pop ¦Æs ý|5 ¶Ñ.ÊxÌÌÈ1V¹=URì³ÐrUTì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa>Ó×Í ÷áÅcäÊbÝÛ[« zà
û
ýι2ÿþÊa" ²&xÌÌÈ2V¹=URÍ ÷áŹ<Êb33[« zà
û
ýι2ÿþÊa Í ª¨ì³Ðrªªì³ zà ,ÓÛLè÷áÅ33¹133[« zà ßü
ýÎ4÷áÅ
¡ÊbüÈ2 y[« zà
ë
ýÎÊaüÈ2BuÍ ÷áÅlÊcÝÛ[« zà +
ýÎa`÷ègiºWith,êlforexample,ÊaUR¹=3º,êlÊb¹=4ºandÊc¹=Í ¹5ºthepSossiblevÿXíaluesforÊxºare:v«âmïcolor push gray 0ï color popègiÖ$$x_1,j=\numval[3]{x_1}$$© ègi$$x_2,j=\numval[3]{x_2}$$v¬ ÕgcÊxÌÌÈ1V¹=UR0Ê:¹786¤CF Ó¬µÊxÌÌÈ2V¹=URÍ ¹2Ê:¹12¡ègiºThe ÒpÖ3 ÒoºoptiontoÍnÇn umvÿ@al Òpºsetstheprecisiontothreedigits, ÓòitisequivÿXíalen¬wttowriting¦ègiÖ\numval[precision=3]{x_1}º.ÃFègiWhenêlapplyingÊfGÿ¹(Êx¹)ºonthesevÿXíaluesofÊxº,theresultis(almost)zero:¤IÒâmïcolor push gray 0ï color popègiÖ$$f(x_1),j=\numval{f(x_1)}$$¦ègi$$f(x_2),j=\numval{f(x_2)}$$¡ ·H»ÊfGÿ¹(ÊxÌÌÈ1À¹)UR=Í ¹1Ê:¹776ÿþÍUR¹10ûÎ È15CF ×¾ÊfGÿ¹(ÊxÌÌÈ2À¹)UR=0$ègiÙ5.2y¯Example:G\FindingtheextremaofafunctionÊègiºTÿeoêlndtheextremaofÊfGÿ¹(Êx¹)º,w¬wesettherstderivÿXíativetozeroandsolveforÊxº:¡âmïcolor push gray 0ï color popègiÖ\deleq{"eq:a";"eq:b";"eq:c"}¦ègi$$\eq[eq:f]{f(x),j=\val{f(x)}}$$¦ègi$$\eqdiff{"eq:f"}{x},j=0$$¦ègi\eqsub*{\rhs{"prev"},j=0}{b}%¦ègi\eqsubst*{"prev"}{x,j=x_{extr}}%¦ègi$$\eqdiv[eq:xextr]{"prev"}{2a}$$¡ »k¤ÊfGÿ¹(ÙÃÊx¹)n+=URÊcª¨¹+ÊaÿþxûÈ2j¬¹+ÊbxCF »·ÔfGÿûÎ08¹(§üÊx¹)<d=URÊbª¨¹+2ÿþÊax¹=06Õ Ð
ÊxÌÌËextr³Õ¹=URÍ ÷áŹ<Êb33[« zà
û
ýι2ÿþÊaAÊègiºDepSendingùonùthesignofthesecondderivÿXíateÊfGÿû¥2Î00dq¹(
ö5Êx¹)¤y=o.2ÿþÊaº,ù¡thiswillbSeaminim¬wumoramaxim¬wum.ù´The¦ègivÿXíalueêloftheextrem¬wumis¡âmïcolor push gray 0ï color popègiÖ$$\eqsubstc[eq:yextr]{y_{extr},j=\rhs{"eq:f"}}{x=x_{extr};"eq:xextr"}$$. É`ÁÊyÌÌËextr³Õ¹=URÊcª¨Í ÷áÅÝÛ¹1ÝÛ[« zà ßü
ýÎ4÷áÅ$=Êbû¥2È2$=[« zà ¾î
ýÎÉ÷ÊaSØègiºorêlwiththevÿXíaluesusedintheprevioussectionÊaUR¹=3º,êlÊb¹=4ºandÊc¹=Í ¹5º:¡âmïcolor push gray 0ï color popègiÖ$$x_{extr},j=\numval{x_{extr}}\quady_{extr}=\numval{y_{extr}}$$¡ ÄÊxÌÌËextr³Õ¹=URÍ ¹0Ê:¹6667¿DÊyÌÌËextr¹=Í ¹6Ê:¹333 ègiïcolor push gray 0þñï color pop
_Þ ¹ðü ý;9ègiïcolor push gray 0Ø6¿DMAÿeTRICES³ªÄº10þñï color pop ¦Æs ý~9ègiÙ5.3y¯LibraryG\ofsubstititions0ègiºTÿeoO+mak¬weO*workingwithequationseasier,ODthereisaO*libraryofmainlytrigonometricsubstitutionswhic¬wh¤ ègicanêlbSeincludedwithÖ\input,jsubstitutions.texº.Fÿeorexample,considerthisequation:©Q²âmïcolor push gray 0ï color popègiÖ\clearequations¡ègi\input,j../examples/substitutions.tex¡ègi$$\eq[eq:r1]{\frac{r_1}{\sin(\pi,j-\frac{\theta}{2})}=\frac{r_2}{\sin(\frac{\pi}{2}-\frac{\theta}{2})}}$$¡ègi$$\eqsubst{"prev"}{"lib:trig:sina+pi/2";,j"lib:trig:sina+pi"}$$¡ègi$$\eqsubst{"prev"}{"lib:trig:sin-a";,j"lib:trig:cos-a"}$$¦¡÷áÅ È
>ÊrÌÌÈ1 ³ç[« zà 3ú<¸d¹sinm(ÊáÍ ûFuäËÝÛöû zà @åêÈ2 Q¹) ë¨=÷áżQÊrÌÌÈ2
[« zà 4s'¸d¹sinm(ûFu33Ë33öû zà +
åêuÈ2
<Í ûFuäËÝÛöû zà @åêÈ2 Q¹)!Ò¥ µ^½Í ÷áÅÊrÌÌÈ1ÝÛ[« zà +há¸d¹sinmöG©Ð íÍ ûFu9mË33öû zà @åêÈ2¦jöG©Ð3ÏA¹=÷áÅÞJÊrÌÌÈ2
[« zà ,·¸d¹cos»TöG©Ð ;VÍ ûFu9mË33öû zà @åêÈ2¦jöG©Ð!â÷áÅ ÐñÊrÌÌÈ1 Äó[« zà "¸d¹sinmöG©Ð ûFu&Ë Qöû zà @åêÈ2öG©Ð ë.¹=÷áÅ3ÊrÌÌÈ2
[« zà #a¸d¹cos»TöG©Ð ûFutÃËnöû zà @åêÈ2áÀöG©Ð#ÑòègiºThisêlequationcanno¬wwbSesolvedtogiveanexpressionforûFu#ÙËöû zà @åêÈ2
Öº:¦âmïcolor push gray 0ï color popègiÖ$$\eqsubst{"prev",j*\sin{\theta/2}/r_2}{\eqrev{"lib:trig:tansincos"}}$$¡ègi$$\eqrev{\eqsimpf{\eqfunc{"prev"}{\arctan}}{unsafe},j*2}$$#â¡÷áÅ ÍÊrÌÌÈ1 Í[« zà
ýÎÊrÌÌÈ2 Û$¹=URtanN(ïqÐ÷áÅ ` Ê V³[« zà ßü
ýι2'iâïqÐ$=p ÀIʨà¹=UR2ÿüarctan&£rïqÐ÷áÅ0«ýÊrÌÌÈ10«ý[« zà
ýÎÊrÌÌÈ2;ê¿ïqÐ×ègiºThe^|k¬weyword^{ÍnÇeqrevºswaps^{leftandright^{handsideoftheequation._RÍnÇeqfuncºappliesafunctiontobSoth¡ègisides.,ÿtègiÆ6^
MatricesQöègiºVÿeectorsêlandmatricescanbSecreatedwiththefollo¬wwinginput:¦âmïcolor push gray 0ï color popègiÖ\begin{align*}¡ôÀ=\matrix{v_1}%¡ôÀ=\matrix{v_2}%¡ôÀ=\matrix{M_1}%¡ôÀ=\eq[eqraw=false]{v_1,j={x;y;z}}\\¡ôÀ=\eq[eqraw=false]{v_2,j=\transpose{x;y;z}}\\¡ôÀ=\eq[eqraw=false]{M_1,j={{x_1;y_1;z_1};{x_2;y_2;z_2};{x_3;y_3;z_3}}}¡ègi\end{align*} ègiïcolor push gray 0þñï color pop k£ ¹ðü ý;9ègiïcolor push gray 0Ø7¿DGRAPHSÀ¢|º11þñï color pop ¦Æs ý~9 ¼ëÊvÌÌÈ1 ÊUu¹=URöG©Ð æc
ÕTÊx¦y.«
z9©ºöG©Ð! ¼ëÊvÌÌÈ2 ÊUu¹=çá9URÐ0§UR@ñfdÕTÊx¤ÿy¡,ãzçá9¦Ð1§¦A/ý ¶âÊMÌÌÈ1 ÊUu¹=çá9URÐ0§UR@ñfdÕTÊxÌÌÈ1(BªÊyÌÌÈ1<½TÊzÌÌÈ1¤ÿÕTÊxÌÌÈ2(BªÊyÌÌÈ2<½TÊzÌÌÈ2¡ÕTÊxÌÌÈ3(BªÊyÌÌÈ3<½TÊzÌÌÈ3çá9KòªÐ1§KòªA#©\ègiºIt_tis_sv¬weryimpSortant_stoindicatetoEQC^ÒthatavÿXíariablecon¬wtainsamatrix(bSecauseofthenon-¤ ègicomm¬wutativity_vofproSducts).a²ThisisdonewiththeÍnÇmatrixºk¬weyword.Note_vthatcurren¬wtlyitisnot¡ègipSossibleÏtoÏcreateastandingÊ0v¬wectorwithÖ\eq{v_2,j={{x};{y};{z}}º.ÐõInstead,ÏÏusetheÏÍnÇtransp_úose¡ègiºfunctionêlassho¬wwnintheexample.QøègiTheêlvÿXíalueofmatrixelemen¬wtscanbSefoundwiththefunctionÖ\mindexº:©õéâmïcolor push gray 0ï color popègiÖ\begin{align*}¡ôÀ=\eq{m,j=\mindex{M_1;b;2}}\\¡ôÀ=\eq{b,j=3}\\¡ôÀ=m_{32},j&=\val{m}¡ègi\end{align*}ß× ËxtÊmÌÌÈ32 âã¹=URÊMÌÌÈ1À¹[Êb;ÿþ¹2]¤ ÙÀ§Êb âã¹=UR3¡ ËxtÊmÌÌÈ32 âã¹=URÊyÌÌÈ3iîègiºYÿeouêlcanusetheÖ\wildºfunctionastheindextoaccessawholero¬wworcolumn.QùègiEQCêlsuppSortsthefollo¬wwingoperationswithmatricesandv¬wectors:¦ègiïcolor push gray 0ïÍðï color popÇUºA¬wdditionêlandsubtraction¤ûègiïcolor push gray 0ïÍðï color popÇUºMultiplicationúègiïcolor push gray 0ïÍðï color popÇUºExpSonen¬wtiation¡ègiïcolor push gray 0ïÍðï color popÇUºTÿeranspSositionêlwiththeÍnÇtransp_úose¦ègiºEQCêlwillterminatewithanerrorifthematricesorv¬wectorsarenotcompatiblewithoneanother.*&ègiÆ7^
Graphs3^ègiºEQCû!hasû%someû&suppSortforcreatinggraphswiththepac¬wkÿXíagepstricks.û?Asû%anexample,û)wewillû%compare ègitheêlgraphofafunctionwithitsTÿea¬wylorseriesexpansion.QøègiTheêldenitionoftheTÿea¬wylorseriesexpansionisä n(ÊTÌÌËn¨PÊfGÿ¹(Êx;ÿþxÌÌÈ0À¹)UR=ðÿü kÖËn ôÐX
ãSËiÈ=0ª¨ÊfûÈ(ËiÈ)IQ¹(ÊxÌÌÈ0À¹)ÿþÍ÷áÅ
¹(Êxª¨Í ÊxÌÌÈ0¹)û¥2Ëi
[« zà -M±
ýÎÿÊi¹! ¨ègiºApplyingêlthisto¹arctan$ä(Êx¹)ºaroundthepSoin¬wtÊxÌÌÈ0V¹=UR0Ê:¹7º,wehave ègiïcolor push gray 0þñï color pop vÓ ¹ðü ý;9ègiïcolor push gray 0Ø7¿DGRAPHSÀ¢|º12þñï color pop ¦Æs ý~9âmïcolor push gray 0ï color popègiÖ\function{f}{x}%¤ ègi\begin{align}¡ôÀ=\eq[eq:f0]{f(x),j=\arctanx}\tag*{}\\¡ôÀ=\eqdiff[eq:f1]{"prev"}{x}\tag*{}\\¡ôÀ=\eqdiff[eq:f2]{"prev"}{x}\tag*{}¡ègi\end{align}©&Ôà ¿ùÊfGÿ¹(Êx¹) Ú2_=URarctan%øÈÊx3 ½+SfGÿûÎ08¹(§üÊx¹) Ú2_=÷áÅ{1
[« zà Æ*
ýÎ1ª¨+ÊxüÈ2nÌ ºÝÊfGÿûÎ00dq¹(
ö5Êx¹) Ú2_=URÍ ¹2÷áűeÊx33[« zà -©¶mȹ(Ä1ª¨+ÊxüÈ2À¹)(é²ú*«È2 ÄègiºTheêlvÿXíaluesofthefunctionatÊxÌÌÈ0ªpºareÿ®âmïcolor push gray 0ï color popègiÖ\begin{align*}¡ôÀ=\eqsubstc{"eq:f0"}{x,j=x_0;"eq:x_0"}\\¡ôÀ=\eqsubstc{"eq:f1"}{x,j=x_0;"eq:x_0"}\\¡ôÀ=\eqsubstc{"eq:f2"}{x,j=x_0;"eq:x_0"}¡ègi\end{align*}¦ ÆtÃÊfGÿ¹(ÙÃ0Ê:¹7) éÈ=UR0Ê:¹6107¤ æÊfGÿûÎ08¹(§ü0Ê:¹7) éÈ=UR0Ê:¹6711¡ ÁXQÊfGÿûÎ00dq¹(
ö50Ê:¹7) éÈ=URÍ ¹0Ê:¹6306©UègiºTheêlrstpartsoftheexpansionareÿ®âmïcolor push gray 0ï color popègiÖ\begin{align}¤ ôÀ=\eq{\arctan(x),j=¡\rhs{\eqsubst{"eq:f0"}{x,j=x_0}}+¡\rhs{\eqsubst{"eq:f1"}{x,j=x_0}}\frac{x-x_0}{1!}+¡\rhs{\eqsubst{"eq:f2"}{x,j=x_0}}\frac{(x-x_0)^2}{2!}¡}\notag\\¡ôÀ=\eqsubst[eq:series]{"prev"}{"eq:x_0"}\tag*{}\\¡ôÀ=\eqsimpf{"prev"}{expand}¡ègi\end{align}/§vÚG¹arctan }½Êx £a¹=URarctan%øÈÊxÌÌÈ04ÆÍ ÷áÅÝÛÊxÌÌÈ0À¹(QÆÊxÌÌÈ0j¬Í ª¨Êx¹)0¨Ùú*«È2ÝÛ[« zà </·¼6=¹(È1ª¨+ÊxûÝßÈ2S0À¹)0ïùà·È2CÑåÍ ÷áÅÝÛÊxÌÌÈ0j¬Í ª¨ÊxÝÛ[« zà ÅO
ýι1ª¨+ÊxûÝßÈ2S0òT £a¹=UR0Ê:¹1409ª¨+0Ê:¹6711ÿþÊxÍ ¹0Ê:¹3153(ÂÊxÍ ¹0Ê:¹7)/ú*«È2 £a¹=UR1Ê:¹113ÿþÊxª¨Í ¹0Ê:¹3153ÊxûÈ2j¬Í ¹0Ê:¹01357éc¼º(2)¦ègiTheêlsameresultcanbSeobtainedmoreeasilywiththeÍnÇtseriesºk¬weyword: ègiïcolor push gray 0þñï color pop
ß ¹ðü ý;9ègiïcolor push gray 0Ø7¿DGRAPHSÀ¢|º13þñï color pop ¦Æs ý~9âmïcolor push gray 0ï color popôÀ=Ö\arctan,jx=\val{\tseries{\arctanx}{x=0.7}{3}}©à *;¹arctan «Í±ÊxUR¹=1Ê:¹113ÿþÊxª¨Í ¹0Ê:¹3153ÊxûÈ2j¬Í ¹0Ê:¹01357cègiºTheêlt¬wwofunctionsarecomparedingure1.àâmïcolor push gray 0ï color popègiÖ\begin{figure}[!htb]¤ ôÀ=\begin{center}¡\psset{xunit=40mm,,jyunit=25mm}¡\mmakepspicture{-1}{-1.6}{2}{1.2}{0.5}{0.2}{$x$}{$\arctan(x)$}{%IMPORTANT,jCOMMENT!¡
qå\printvector{\val{\eqeval{y,j=\arctanx}{x=-1:2:0.1}}}%¡\psset{linecolor=red}%¡\pscurve{-}\printvector{\val{\eqeval{"eq:series"}{x,j=-1:2:0.1}}}}¡ôÀ=\end{center}¡ôÀ=\caption{Comparison,jof$\arctanx$withitsTaylorseriesexpansion\label{fig:func}}¡ègi\end{figure} ègi ÿèDïcolor push gray 0 ú¼Ø*ÐM?
ïcolor push gray 0ï color pop0F Äï ò C" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 239.00383 0 -113.81102 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò J" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 89.62578 0 exch -113.81143 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïñ" tx@Dict begin STP newpath 2.0 SLW 0 setgray 0 rotate /n 3 def /dx 56.9055 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ïò" tx@Dict begin STP newpath 2.0 SLW 0 setgray 0 rotate /n -2 def /dx 56.9055 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ïó" tx@Dict begin STP newpath 2.0 SLW 0 setgray 90 rotate /n 5 def /dx 14.22615 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ïô" tx@Dict begin STP newpath 2.0 SLW 0 setgray 90 rotate /n -8 def /dx 14.22615 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end Sò ;" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 341.66055 0 0.0 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò B" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 199.2552 0 exch 0.0 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò " tx@Dict begin STP newpath 0.8 SLW 0 setgray 0 rotate /n 6 def /dx 56.9055 def n 0 lt { /dx dx neg def /n n neg def } if /y2 199.16946 CLW 2 div add def /y1 y2 neg def /y1 0 def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end Äï ïì" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 227.84953 0 -113.81102 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò B" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 199.2552 0 exch 0.0 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end
"!ý¹01f
0Ê:¹5jMÜ1Ê:¹0 £5«1Ê:¹5 Üz2Ê:¹0
"!ºëÃÍ ¹0Ê:¹5ôÍ ¹1Ê:¹00F¸}Vó·ág£ ff cmmi12¾xSò ;" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 341.66055 0 0.0 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò B" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 199.2552 0 exch 0.0 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò " tx@Dict begin STP newpath 0.8 SLW 0 setgray 90 rotate /n 14 def /dx 14.22615 def n 0 lt { /dx dx neg def /n n neg def } if /y2 341.43306 CLW 2 div add def /y1 y2 neg def /y2 0 def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end 0FSò ;" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { BeginArrow 1. 1. scale 2 setlinecap 0 0 moveto 0 0.1 L stroke 0 0 moveto EndArrow moveto } def /ArrowB { } def 341.66055 0 0.0 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïó" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 85.44377 0 exch -113.81143 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ÝÝô¹¹0¤ñÆÝÝë0Ê:¹2¡ÝÝë0Ê:¹4¡ÝÝë0Ê:¹6¡ÝÝë0Ê:¹8¡ÝÝë1Ê:¹0¡ÝÝë1Ê:¹2¤9å]Ýâ@¿Í ¹0Ê:¹2¡]Ýâ@¿Í ¹0Ê:¹4¡]Ýâ@¿Í ¹0Ê:¹6¡]Ýâ@¿Í ¹0Ê:¹8¡]Ýâ@¿Í ¹1Ê:¹0¡]Ýâ@¿Í ¹1Ê:¹2¡]Ýâ@¿Í ¹1Ê:¹4¡]Ýâ@¿Í ¹1Ê:¹6 ÿ2Ûüfg §ÜóX«Q ff cmr12½arctan Ï(¾x½) Äï 0Fò " tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def [ 227.62204 78.75346 216.24023 77.27191 204.86017 75.66336 193.47838 73.91154 182.09831 71.9991 170.71652 69.90756 159.33473 67.61414 147.95467 65.09279 136.57288 62.31528 125.19281 59.25124 113.81102 55.867 102.42921 52.12675 91.04915 47.99577 79.66736 43.44258 68.2873 38.44112 56.9055 32.98055 45.52371 27.06627 34.14365 20.73196 22.76186 14.04164 11.38179 7.08974 0.0 0.0 -11.38179 -7.08974 -22.76186 -14.04164 -34.14365 -20.73196 -45.52371 -27.06627 -56.9055 -32.98055 -68.2873 -38.44112 -79.66736 -43.44258 -91.04915 -47.99577 -102.42921 -52.12675 -113.81102 -55.867 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò ." tx@Dict begin STP newpath 0.8 SLW 1 0 0 setrgbcolor /ArrowA { moveto } def /ArrowB { } def [ 227.62204 67.60002 216.24023 68.43361 204.86017 68.81783 193.47838 68.7538 182.09831 68.24149 170.71652 67.27983 159.33473 65.86992 147.95467 64.01173 136.57288 61.70529 125.19281 58.9495 113.81102 55.74544 102.42921 52.09311 91.04915 47.99144 79.66736 43.44258 68.2873 38.44438 56.9055 32.99683 45.52371 27.1021 34.14365 20.75801 22.76186 13.96565 11.38179 6.72397 0.0 -0.9649 -11.38179 -9.10313 -22.76186 -17.68962 -34.14365 -26.72546 -45.52371 -36.20956 -56.9055 -46.14194 -68.2873 -56.52257 -79.66736 -67.35255 -91.04915 -78.62973 -102.42921 -90.35623 -113.81102 -102.5321 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.8 SLW 1 0 0 setrgbcolor 1. .setopacityalpha 0 setlinecap stroke grestore end % _î]ïcolor push gray 0ºFigureêl1:Comparisonof¹arctan&âÊxºwithitsTÿea¬wylorseriesexpansionï color popï color popmègiTheêlargumen¬wtstoÍnÇmmak epspictureºare:¦ègiïcolor push gray 0ïÍðï color popÇUºNegativ¬weêlÊxº-axisvÿXíalue,thennegativeÊyn9º-axisvÿXíalue¤\vègiïcolor push gray 0ïÍðï color popÇUºP¬wositiveêlÊxº-axisvÿXíalue,thenpSositiv¬weÊyn9º-axisvalue¡ègiïcolor push gray 0ïÍðï color popÇUÊxº-axisêlstepvÿXíalue,thenÊyn9º-axisstepvalue(fortheaxislabSels)\wègiïcolor push gray 0ïÍðï color popÇUÊxêlºandÊyX¥ºaxisnames¡ègiïcolor push gray 0ïÍðï color popÇUºAnêlarra¬wyof¹(Êx¹;ÿþÊyn9¹)ºvÿXíaluestoplot ègiïcolor push gray 0þñï color pop ù ¹ðü ý;9ègiïcolor push gray 0Ø8¿DUTILITYêlFUNCTIONSu\åº14þñï color pop ¦Æs ý~9ègiThe9lastisgenerated9b¬wythekeywordÍnÇprin tvectorº,9Éwhich9convertstheoutputof9ÍnÇeqevÿ@alºintoaformat¤ ègirecognized!»b¬wypstricks.#ÍnÇeqevÿ@alºevÿXíaluatesanequation!ºforallthevaluesof!ºtheindepSenden¬wtvariable¡ègigiv¬wenªZasªYthesecondparameter.ª¼Intheexample,ªjÍ ¹1UR:2:0Ê:¹1ºcreatesªZav¬wectorofn¬wumbSersªZfromÍ ¹1ºto¹2ºin¡ègiincremen¬wts¥"of¥!¹0Ê:¹1º.¥TheresultisamatrixwiththevÿXíaluesoftheindepSenden¬wtvÿXíariableintherstcolumn¡ègiandêltheevÿXíaluationresultsinthesecondcolumn:¤<âmïcolor push gray 0ï color popègiÖ\eq{r,j=\eqeval{"eq:series"}{x=-1:2:0.5}}E& jÊr¨à¹=ËYURÐ0ÇURB¤38URB¡URB¡URB¡URB¡URB¡URB¡URB®UR@ÔffgÍ ¹1;+Í ¹1Ê:¹441¤ÿÕTÍ ¹0Ê:¹58-Í ¹0Ê:¹6487¡Ä05./Í ¹0Ê:¹01357¡ 0Ê:¹5<ÈÙ0Ê:¹4639¡Ä1<ÈÙ0Ê:¹7837¡ 1Ê:¹5<ÈÙ0Ê:¹9458¡Ä2<ÈÙ0Ê:¹9504ËYjúÐ1ÇjúC¤38júC¡júC¡júC¡júC¡júC¡júC¡júC®júAC·ègiºThereêlisalsoasimpliedv¬wersionÍnÇmak epspictureºfordrawingagraphintherstquadrantonly:¡ègiïcolor push gray 0ïÍðï color popÇUºLoScationêloforiginintheformat(x0,y0)¤Æ>ègiïcolor push gray 0ïÍðï color popÇUºLoScationêloflo¬wwerêlleft-handcornerintheformat(x1,y1)©Æ?ègiïcolor push gray 0ïÍðï color popÇUºP¬wositiveêlÊxº-axisvÿXíalue,thenpSositiv¬weÊyn9º-axisvalue¡ègiïcolor push gray 0ïÍðï color popÇUÊxº-axisêlstepvÿXíalue,thenÊyn9º-axisstepvalue(fortheaxislabSels)¦ègiïcolor push gray 0ïÍðï color popÇUÊxêlºandÊyX¥ºaxisnames¡ègiïcolor push gray 0ïÍðï color popÇUºAnêlarra¬wyof¹(Êx¹;ÿþÊyn9¹)ºvÿXíaluestoplot<ègiOf0dcourse,0¶ifÍnÇmak epspicture0cºandÍnÇmmakepspicture0cºdonotsuity¬wourpurpSoses,0¶youcan0cusethe¤ ègistandardêlpstric¬wksmacrosinsteadorcreateyourownshortcuts.+ègiÆ8^
Utilitÿ{ky6êfunctionsJÃègiºIfKVy¬wouKWwanttomakeKWafreshstartinthemiddleofadoScumen¬wt,KuseÍnÇclearequationsº.LJThiswilldeleteall¡ègipreviouslyJdenedequationsexceptlibraryequations,cbutKk¬weeptheconstantsandanyfunctionsdened¡ègiwithêlthehin¬wtÖlibº.+ègiÆ9^
Pitfalls!ÊÂègiÙ9.1y¯UnexppectedG\newlines(âègiºIfy¬wouuseEQCScommandslikeÖ\eqmul*ºthatproSducenoLatexoutputinsideanequationarra¬wyenvi-¡ègironmen¬wt,/followthemb¬wyacommenttoavoidinsertionofanewlineintheoutputle.úEquationarray¡ègien¬wvironmentsêlmaynotcontainnewlines.Fÿeorexample: ègiïcolor push gray 0þñï color pop ¬± ¹ðü ý;9ègiïcolor push gray 0Ø9¿DPITFþ±ÜALLS¹fº15þñï color pop ¦Æs ý~9âmïcolor push gray 0ï color popègiÖ\begin{eqnarray}¤ ègi\eq{x,j&=&a+b}¡ègi\eqsub*{"prev"}{b}¡ègi\eqrev{"prev"}¡ègi\end{eqnarray}±ègiºwillêlyieldthefollo¬wwingoutput:©±âmïcolor push gray 0ï color popègiÖ\begin{eqnarray}¡ègix&=&a+b¡¡ègia&=&x-b¡ègi\end{eqnarray}$ìèègiÙ9.2y¯MultipleG\ppossiblevÿÆaluesforequations|ègiºConsiderêlthefollo¬wwingequation:^ø¡ ÊpÊuUR¹=Êxª¨¹+Êyn7¹sinÛSÊ'½ðègiºNo¬wwêlwewanttondthevÿXíalueÊxÌÌÈ1ªpºwhichwillmakeÊuºbSecomezero.¦âmïcolor push gray 0ï color popègiÖ\begin{equation}¡ègi\eqsubst[eq:usubst]{"prev"}{x,j=x_1}=0¡ègi\end{equation}©±¡ ¼9mÊuUR¹=ÊxÌÌÈ1j¬¹+ª¨Êyn5¹sinÛQÊ'¹=0éc¼º(3)½ðègiandêlndÊxÌÌÈ1ªpºtobSe:¦âmïcolor push gray 0ï color popègiÖ\eqsubst*{"prev"}{u,j=0}¡ègi\eqsub*{"prev"}{\sin\varphi,jy}¡ègi$$\eqrev{"prev"}$$±¡ Ìú?ÊxÌÌÈ1V¹=URÍ Êyn5¹sinÛQÊ'©½ðègiºButêlwhathappSensifw¬wenowaskforthevÿXíalueofÊuº?^øègiÖu,j=\val{u}¡ ÇÊuUR¹=ÊxÌÌÈ1j¬¹+ª¨Êyn5¹sinÛQÊ'¦ègiºEQCprin¬wtsCaBwarningthatthereCaremultiplepSossiblevÿXíaluesCforÊuº(i.e.,nÊxÿ¹+ Êyn7¹sinÛSÊ'ºandÊxÌÌÈ1ß¹+Êyn7¹sinÛSÊ'º)¡ègiandÈ~thenÈ}c¬whoSosesthelastvÿXíalue(whic¬whmightÈ~ormigh¬wtnotbSewhatw¬wewanted).ȱTherearetwoÈ}waysto¡ègia¬wvoidêlthis:éègiïcolor push gray 0\õ1.ðï color popÇUDoêlbSothsubstitutionsatthesametime:Ö\eqsubst{"prev"}{x,j=x_1;u=0}º.¥ègiïcolor push gray 0\õ2.ðï color popÇUIn¬wtroSduceêlatemporaryforÊuº:Ö\eqsubst{"prev"}{x,j=x_1;u=u_{temp}}º. ègiïcolor push gray 0þñï color pop ¸ñ ¹ðü ý;9ègiïcolor push gray 0Ø9¿DPITFþ±ÜALLS¹fº16þñï color pop ¦Æs ý~9ègiÙ9.3y¯MultipleG\substitutions?ègiºIfÛy¬wouÜdomultipleÜsubstitutionsatthesametime,åtheorderinwhic¬whthesubstitutionsaredoneisnot¤ ègidened.Byusingthek¬weywordÍnÇeqsubstcº,>substitutionsaredoneconsecutiv¬welyintheordertheyare¡ègilisted.êlFÿeorexample,compare:© âmïcolor push gray 0ï color popègiÖ$$\eqsubst{x,j=3y}{y=4z;z=3}$$¡ègi$$\eqsubstc{x,j=3y}{y=4z;z=3}$$¦ ÛJ
ÊxUR¹=12ÿþÊz¤ ßI'xUR¹=36¡ègiºOnlyêluseÍnÇeqsubstcºwhenorderisimpSortan¬wtbecauseitislessecien¬wtthanÍnÇeqsubstº.©'ÉègiÙ9.4y¯OutputG\ofncumbpers?ègiºNotÒallÒcom¬wbinationsofÖ\precisionº,ÓÖ\precision_typeºandÖ\scientific_limitsºmak¬wesense.ÕFÿeor¤ ègiexample,ú'y¬wouùámightsettheùâlowerscienticlimitùâto¹0Ê:¹001ºsothatn¬wumbSerslike¹0Ê:¹005ºwillùâbSeprinted¡ègiwithout ïexpSonen¬wt.FIfyou înowsetÖprecision_typeºtoÖfixed_marker îºandprecisionto¹2º,
(numbSerssmaller¡ègithanêl¹0Ê:¹01ºwillbSeprin¬wtedaszero!¦ègiÙ9.5y¯LibraryG\equations?ègiºNote§Öthatlibrary§×equationsarenotautomaticallyusedforndingvÿXíaluesofvÿXíariables.©ÄTheyareconsidered¡ègitoêlbSepurelyforreferencepurposes.Anexample:© âmïcolor push gray 0ï color popègiÖ\eq[lib:myeq]{x,j=7y}¡ègi\eq{y,j=2}¡ègix,j=\val{x}¦ègiºThis=
will×nota=ºreturn¹14ºasthe=vÿXíalueofÊxº.=Ify¬wouwant=
tousealibraryequationforndingvÿXíalues,=y¬wou¡ègineedêltoactivÿXíateåit.Therearet¬wwoêldierentpSossibilities:¦âmïcolor push gray 0ï color popègiÖ\eq{"lib:myeq"}¡ègi\eqsubst{"lib:myeq"}{x,j=x_1}¦ègiºThe8last9caseisreallywhatthelibraryequationsaretherefor:TheyneedtobSeadaptedtospSecial¡ègipurpSosesêlb¬wysubstitutingcustomvÿXíariablesintothem. ègiïcolor push gray 0þñï color pop Àä ¹ðü ý;9ègiïcolor push gray 0Ø9¿DPITFþ±ÜALLS¹fº17þñï color pop ¦Æs ý~9ègiÙ9.6y¯PstriccksG\headaches?ègiºpstric¬wksFìcangiveyouFëheadacheswhenthefunctionthatistoFëbSeplottedhasÊxºorÊyµ$ºvÿXíaluesoflessthan¤ ègi¹1Ê:¹0º,êlforexample,¹sinWÊxº:© âmïcolor push gray 0ï color popègiÖ\begin{figure}[!htb]¡ègi\begin{center}¡ègi\pspicture(\val{-180\degree},-1)(\val{180\degree},1)¡ôÀ=\psgrid(\val{-180\degree},-1)(\val{180\degree},1)¡ôÀ=\psaxes[linewidth=2pt,,jlabels=none]{->}(0,0)(\val{-180\degree},-1)(\val{180\degree},1)¡ôÀ=\pscurve{-}\printvector{\val{¡
qå\eqeval{y,j=\sinx}{x=-180\degree:180\degree:30\degree}}}¡ègi\endpspicture¡ègi\end{center}¡ègi\caption{Function,j$y=\sinx$,naïveversion}¡ègi\end{figure}{g¢ègiBÞïcolor push gray 0`½"Ø*¬ ¨¹{ïcolor push gray 0ï color popÿyãò ¥" tx@Dict begin STP newpath 0.8 SLW 0 setgray gsave 0.4 SLW 0.5 setgray -89.39847 -28.45274 89.39847 28.45274 -89.39847 -28.45274 28.45274 abs 28.45274 abs 5 0 {} 0 /Helvetica findfont 0 scalefont setfont Grid grestore gsave 0.8 SLW 0 setgray -89.39847 -28.45274 89.39847 28.45274 -89.39847 -28.45274 28.45274 abs 28.45274 abs 1 0 { 0 setgray } 10.0 /Helvetica findfont 10.0 scalefont setfont Grid grestore end ò A" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 89.39847 0 -89.39847 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò I" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 28.45274 0 exch -28.45274 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïò" tx@Dict begin STP newpath 2.0 SLW 0 setgray 0 rotate /n 2 def /dx 28.45274 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ïó" tx@Dict begin STP newpath 2.0 SLW 0 setgray 0 rotate /n -3 def /dx 28.45274 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ïô" tx@Dict begin STP newpath 2.0 SLW 0 setgray 90 rotate /n -1 def /dx 28.45274 def n 0 lt { /dx dx neg def /n n neg def } if /y2 3.0 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ò º" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def [ 89.38675 0.0 74.48917 14.22636 59.59116 24.64085 44.69359 28.45274 29.79558 24.64085 14.898 14.22636 0.0 0.0 -14.898 -14.22636 -29.79558 -24.64085 -44.69359 -28.45274 -59.59116 -24.64085 -74.48917 -14.22636 -89.38675 0.0 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end % ¢ïcolor push gray 0ºFigureêl2:FÿeunctionÊyù=URsinÂnÊxº,naïv¬weversionï color popï color popÕègiNoteÎ4thatsomeÍnÇvÿ@alÎ5ºstatemen¬wtsarerequiredtoevÿXíaluatetheunitstooatingpSoin¬wtnumbSers.ÏçThemethod¡ègiabSo¬wve!has!twoma §jordrawbacks:!¸The!Êxº-axisisscaledinradians,!notindegrees,!andthen¬wumbSeringof¡ègitheêlÊyn9º-axisisonlyinin¬wtegernumbSers. ègiTheêlnon-naïv¬weversionofthediagramis:¦âmïcolor push gray 0ï color popègiÖ\begin{figure}[!htb]¡ègi\begin{center}¡ègi\psset{xunit=0.35mm,,jyunit=40mm}¡ègi\pspicture(-190,-1.05)(200,1.1)¡ôÀ=\psaxes[linewidth=2pt,,jticks=none,labels=none]{->}(0,0)(-190,-1.05)(200,1.1)¡ôÀ=\psaxes[Dx=30,,jticks=x,labels=x,ticksize=40mm]{-}(0,0)(-180,-1)(180,1)¡ôÀ=\psaxes[Dy=0.2,,jticks=y,labels=y,ticksize=54mm]{-}(0,0)(-180,-1.05)(180,1.1)¡ôÀ=\pscurve{-}\printvector{\val{\eqeval{¡Ê¹\eqsubst{y,j=\sinx}{x=x\degree}}{x=-180:180:30}}}¡ègi\endpspicture¡ègi\end{center}¡ègi\caption{Function,j$y=\sinx$}¡ègi\end{figure} ègiïcolor push gray 0þñï color pop É ¹ðü ý;9ègiïcolor push gray 0Ø9¿DPITFþ±ÜALLS¹fº18þñï color pop ¦Æs ÿG`]ègi þãxÓïcolor push gray 0 -Ø*¬?îïcolor push gray 0ï color popÉò C" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 199.16992 0 -189.21143 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ò J" tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def /ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. 1. .setopacityalpha Arrow EndArrow } def 125.19281 0 exch -119.5019 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 2.0 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end Éïì" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 179.25293 0 -179.25293 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïô" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 113.81102 0 exch -113.81102 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïø" tx@Dict begin STP newpath 0.8 SLW 0 setgray 0 rotate /n 6 def /dx 29.87549 def n 0 lt { /dx dx neg def /n n neg def } if /y2 113.81102 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ~ñÀ $¹305àD60SÀd90n°120 ¦150 ªpÆ180ïù" tx@Dict begin STP newpath 0.8 SLW 0 setgray 0 rotate /n -6 def /dx 29.87549 def n 0 lt { /dx dx neg def /n n neg def } if /y2 113.81102 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ~ñÀ×8Í ¹30¹µÍ ¹60ÔøÍ ¹90ÿ{ÚÍ ¹120ÿ]$ºÍ ¹150ÿ?DÍ ¹180Éïì" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 179.25293 0 -179.25293 0 ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïó" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def 125.19281 0 exch -119.5019 0 exch ArrowA CP 4 2 roll ArrowB L pop pop gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end ïù" tx@Dict begin STP newpath 0.8 SLW 0 setgray 90 rotate /n 5 def /dx 22.76186 def n 0 lt { /dx dx neg def /n n neg def } if /y2 179.25235 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ¤é<÷ÝÝÿ8U|0Ê:¹2¡ÝÝÿ8U|0Ê:¹4¡ÝÝÿ8U|0Ê:¹6¡ÝÝÿ8U|0Ê:¹8¡ÝÝÿ8U|1Ê:¹0ïú" tx@Dict begin STP newpath 0.8 SLW 0 setgray 90 rotate /n -5 def /dx 22.76186 def n 0 lt { /dx dx neg def /n n neg def } if /y2 179.25235 CLW 2 div add def /y1 y2 neg def /x dx def n { x y1 moveto x y2 lineto stroke /x x dx add def } repeat end ¤Ã ]Ýÿ/ %Í ¹0Ê:¹2¡]Ýÿ/ %Í ¹0Ê:¹4¡]Ýÿ/ %Í ¹0Ê:¹6¡]Ýÿ/ %Í ¹0Ê:¹8¡]Ýÿ/ %Í ¹1Ê:¹0Éò ¾" tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def /ArrowB { } def [ 179.25293 0.0 149.37744 56.9055 119.50195 98.5635 89.62646 113.81102 59.75098 98.5635 29.87549 56.9055 0.0 0.0 -29.87549 -56.9055 -59.75098 -98.5635 -89.62646 -113.81102 -119.50195 -98.5635 -149.37744 -56.9055 -179.25293 0.0 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.8 SLW 0 setgray 1. .setopacityalpha 0 setlinecap stroke grestore end % ¿Ýïïcolor push gray 0ºFigureêl3:FÿeunctionÊyù=URsinÂnÊxï color popï color pop ègiïcolor push gray 0þñï color popø ÛÀ; è¹ðüøfZ ó.&Lt$ ff ff ecbx1440ó-]Kdï ecsl1200ó,ë¡ ecti1200ó+D7`± ectt1200ó%ú±u
cmex10ó#¾KÈ cmsy8ó"!",
cmsy10ó ×2 cmmi8ó·ág£ cmmi12ó|{Y cmr8ó¥!¢N ecbx1200ós©^d G® G® ecbx1728ó·ág£ ff cmmi12óX«Q ff cmr12ó& ff ff ecrm1440óÆîê ½q ½q ecrm2074óÓ·å ecrm1200óX«Q cmr12ù ê;ßßßßßß