Drug name recognition and normalisation/grounding to DrugBank ids and standard names.

Package provides 2 taggers:
1. DrugTagger - CRF-based with DrugBank presence feature (see feature set for details).
2. DrugnameGazetteer - gazetteer/dictionary-based. Dictionary created from DrugBank.ca database.
Both taggers include grounding/normalisation to DrugBank ids and standard names.

Feature set:
Word, Word-1, Word+1, Word-1_Word, Word_Word+1, DrugBankPresence, POS
DrugBankPresence feature indicates the presence of the drug name in the DrugBank.

Using CONLL-Evaluation:
processed 32065 tokens with 3656 phrases; found: 3251 phrases; correct: 2786.
accuracy: 95.25%; precision: 85.70%; recall: 76.20%; FB1: 80.67


Using GATE Corpus Benchmark:
Strict: P: 0.65 R: 0.73 F1: 0.69
Lenient: P: 0.74 R: 0.84 F1: 0.78

The details of how to reproduce evaluation, see README.

To use standalone version for tagging download DrugExtractionStandalone.tar.gz from Files.

Project Samples

Project Activity

See All Activity >

Follow Drug Extraction

Drug Extraction Web Site

You Might Also Like
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Drug Extraction!

Additional Project Details

User Interface

Console/Terminal

Programming Language

Java

Related Categories

Java Bio-Informatics Software, Java Linguistics Software, Java Machine Learning Software

Registered

2015-06-10